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ABSTRACT 

 

Excessive heat significantly impacts the health of Californians during irregular but intense heat 

events.  Through the 21st century, a significant increase in impact is likely, as the state 

experiences a changing climate as well as an aging population.  To assess this impact, future 

heat-related mortality estimates were derived for nine metropolitan areas in the state for the 

remainder of the century.   First, oppressive weather events were predicted for future years by 

first correlating past surface weather types with circulation patterns, and then predicting them 

in the future using projections of future atmospheric circulation at three levels.  Second, we 

estimated heat-related mortality by initially determining historical weather-type mortality 

relationships for each metropolitan area.  These were then projected into the future based on 

predicted weather types.  Estimates account for several levels of uncertainty: for each 

metropolitan area, mortality values are produced for five different climate model-scenarios, 

three different population estimates (along with a no-growth model), and two different levels 

of acclimatization (along with no acclimatization).  Results show a significant increase in heat 

events over the 21st century, with oppressive weather types potentially more than doubling in 

frequency, and with heat events of two weeks or longer becoming up to ten times more 

common at coastal locations.  Major urban centers could have a greater than tenfold increase 

in heat-related mortality in the over 65 age group by the 2090s.    
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EXECUTIVE SUMMARY 

 

Background.  California currently experiences a number of excessive heat events each summer, 

which are associated with elevated rates of human mortality and morbidity. Over the coming 

century, climate change is likely to alter the frequency and intensity of these events, and 

demographic changes are expected to increase significantly the number of people vulnerable to 

these events. Given the mission of CARB, “To promote and protect public health, welfare and 

ecological resources,” this work is highly relevant as it represents a significant advance in our 

efforts to determine the effect of future climate change on public health and welfare in the 

state of California.  

 

Methods.   This project developed consistent and robust estimates of changes in heat-related 

mortality through the 2090s for nine major urban regions in California.  Future projections of 

shifts of weather patterns affecting California were developed from general circulation models.  

Using a new technique, these weather patterns were then used to derive the surface weather 

type.  To do this, first the historical connections between surface weather type and 

atmospheric circulation patterns were derived, and then through logistic regression models, 

future weather type  were inferred for each day.  To assess future heat related mortality, for 

each metropolitan area we developed historical relationships between weather type and 

mortality in the past, accounting for additional factors such as seasonality and the length of a 

heat wave.  These relationships can then be used to drive future projections of heat-related 

mortality by utilizing future weather type predictions. 

 

Our future predictions are more robust since we account for several levels of uncertainty.  First, 

two climate models were used.  With one model, two emissions scenarios were used; for the 

other, three were used; this yields a total of five ‘model-scenarios’ of the future climate.  To 

assess uncertainty in demographic change, three population scenarios for the future were 

assessed, along with a ‘no-growth’ model that assumes that population is constant.  The no-

growth model enables an assessment of the relative changes in mortality due to climate 

changes versus demographic ones.  Last, as it is likely that some acclimatization to the warmer 

climate will occur, we assessed two partial acclimatization scenarios, along with a no-

acclimatization scenario. 

 

Results.  Over the course of the 21st century, a dramatic increase in the frequency of offensive 

weather types is observed in every month, exacerbated in the higher emissions scenarios and 

deeper into the century.  These results translate into a substantial rise in prolonged heat 

events. By the 2090s, heat events that last two weeks or more are projected to occur about 

once a year at each station, while the occurrence of 10-day or greater heat events is projected 
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to increase nearly tenfold in some locations under the higher emissions scenarios. The 

broadened future seasonality and the increase in the frequency of offensive weather types 

along with the increased frequency of consecutive day heat events will have a substantial effect 

on mortality.   

Our results suggest that presently an average of 508 additional heat-related deaths occur per 

year across the nine regions (using no acclimatization), with totals ranging from 15 in Fresno to 

165 in Los Angeles.  Collectively, heat related mortality is projected to increase significantly, 

though the magnitude varies by population projection and emissions scenario.  In the medium 

population growth projections (with no acclimatization), by the 2090s annual mortality could 

rise by more than a factor of 9, to an annual total of 4684-8757 deaths per year depending 

upon GCM scenario.  For a no-population growth case, the annual projected heat-related 

mortality increases to 1074-2051 deaths per year.  Thus, most of this increase is due in large 

part to a rising and aging population, although the increase in mortality due specifically to a 

warming climate is projected to be from 1.9 times (San Francisco) to 7.5 times (San Diego) 

greater than current levels by the 2090s.  Acclimatization, which is difficult to estimate, has the 

potential to reduce these values by around 20 percent, so that under the medium population 

growth scenario, across all nine regions a total of 3526-7371 annual deaths are projected, with 

the variability again according to GCM scenario.  

 

Conclusions.  Our results show that over the course of the 21st century, the state of California 

may experience a significant public health challenge due to the impacts of heat. This is primarily 

because heat events will be more numerous and longer lasting, and the most vulnerable subset 

of the population is the most rapidly growing.  This challenge may require significant changes to 

the infrastructure, including emergency medical services as well as outreach.  The effectiveness 

of adaptive measures, such as heat-health warning systems, and the development of mitigation 

plans, should be assessed in the context of future decades. 
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1.  INTRODUCTION 

 

 1.1 – Overview of the Project and its Significance 

 

California currently experiences a number of oppressive heat events each summer. These 

events are correlated with reduced air quality, prolonged and extreme heat, and elevated rates 

of human mortality and morbidity. Over the coming century, climate change is likely to alter the 

frequency and intensity of these events, and demographic change is expected to increase 

markedly the number of people vulnerable to these events. These changes are expected to 

significantly affect public health across the state, particularly in urban areas where 

temperatures are already elevated due to the urban heat island effect.  

 

The goal of this project is to develop consistent, robust estimates of projected changes in heat-

related mortality over the next century for nine major urban regions in California, based on 

historical observed relationships between large-scale weather patterns and region-specific 

mortality rates. These observed relationships currently form part of the basis for operational 

Heat Watch-Warning Systems (HWWS) present in the Bay Area and part of the Central Valley. 

Application of the Spatial Synoptic Classification (SSC, which places each day into a “weather 

type”), on which the HWWSs are based, to future climate conditions provide a direct 

connection between projected climate change impacts and existing adaptation methods.  

 

Future heat-related mortality is estimated across nine urban regions of the state: San Francisco, 

Oakland, San Jose, Los Angeles, Orange County, Riverside, Sacramento, Fresno, and San Diego.  

Together, these regions comprise nearly 80 percent of California’s population.  Future 

projections of shifts in weather systems affecting each of these cities were developed based on 

two different atmosphere-ocean general circulation models (AOGCMs).  Three future emissions 

scenarios, a higher, mid-high, and lower, were examined, in order to cover a range of possible 

emissions futures. Similarly, three sets of population projections were separately assessed, to 

account for uncertainty in California’s future growth. 

 

With 30 years of mortality data, a robust relationship between human mortality and weather 

types was derived for three age groups (under 65, 65-74, over 74) separately, as it has been 

shown that heat vulnerability increases significantly with age.  These age-specific responses for 

both regular and hot summers were then incorporated within the projections of California’s 

population through 2100.  Given these projections, we then utilized GCM output to infer future 

SSC types, based on the algorithms developed. These SSC types were then related to heat 

vulnerability utilizing the relationships developed.  Population projections were then 

incorporated to convert the levels of vulnerability from rates into estimates of heat mortality. 
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In this final report, we present estimates of heat-related mortality across nine urban regions of 

California through 2100 for five different model-scenarios, three population growth scenarios, 

and with no acclimatization, as well as two theoretical levels of acclimatization.  We also 

estimated the number of heat events of different duration and seasonality.  Given the mission 

of CARB, “To promote and protect public health, welfare and ecological resources,” this work is 

highly relevant as it represents a significant advance in our efforts to determine the effect of 

future climate change on public health and welfare in the state of California.  

 

This study is unique in two key ways.  First, rather than basing our analyses on surface 

predictions generated from downscaled AOGCM output, we have associated AOGCM 

projections of mesoscale, mid-tropospheric patterns with their likelihood of manifesting 

oppressive SSC weather types at the surface, a procedure new to future heat-health 

projections.  As AOGCMs are better able to predict general atmospheric patterns than localized 

weather variables, capitalizing on the relationships we derive enables us to more effectively 

and appropriately utilize model output in predicting future health impacts.  Second, existing 

studies have not adequately accounted for the significant demographic shifts that are virtually 

certain to occur in the 21st century.  These demographic changes, resulting in a population 

much older than what currently exists, will exhibit a much greater collective vulnerability than 

the current population. 

 

1.2 – Heat Effects on Human Health 

 

Heat is generally recognized as the deadliest atmospheric hazard in the developed world (e.g., 

CDC 2004).  In addition to its direct impacts, sustained extreme heat events exacerbate pre-

existing cardiovascular, respiratory, and other chronic health conditions (e.g., Ellis and Nelson 

1978; Kalkstein and Valimont 1987). During the summer of 1980, as many as 10,000 deaths in 

the U.S. may have been associated with oppressive heat (National Climatic Data Center 2007), 

while the summer heat wave of 2003 claimed over 15,000 lives in France and 40,000 

throughout Europe (Valleron and Boumendil 2004). Though some research has suggested an 

overall decrease in heat vulnerability in recent decades (Davis et al. 2002), especially as air-

conditioning has become more commonplace (Smoyer 1998), there is still a clear vulnerability 

to heat (Sheridan et al. 2009), and dramatic mortality episodes have occurred in the U.S. within 

recent years (Klinenberg 2002), most notably in Chicago and other northern cities in July 1995. 

 

The human impacts of heat exposure have been widely studied and summarized in the 

literature (e.g., Kovats and Hajat 2008, Basu 2009).  Most commonly, the human response to 

thermal extremes is assessed by comparing human mortality rates with an ambient thermal 
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metric such as temperature or a heat index.  Typically the relationship between the two 

variables is described as a U-, V-, or J-shaped curve; thus, mortality increases both above and 

below an ‘optimal temperature’ at which mean mortality is at a minimum.  In the middle 

latitudes, mean mortality is typically on average around 10 to 20 percent higher in the cold 

season than in the warm season (Keatinge et al. 2000); however, in most cases, the mortality-

temperature relationship has a greater slope on the warmer side than the colder side (e.g. 

Keatinge et al. 2000, Curreiro et al. 2002), suggesting that human vulnerability in warmer 

temperatures has a stronger temperature dependence.  Many epidemiological studies have 

attempted to assess the interaction between high ambient temperature and atmospheric 

pollution, although collectively the results are mixed and inconclusive (Basu 2009). 

 

Significant research has also evaluated which subsets of the population are most vulnerable to 

the heat (e.g., Bouchama et al. 2007), and has identified both physical factors (e.g., age, 

inability to leave home, cardiovascular problems) as well as social factors (e.g., socioeconomic 

status, level of social interaction) and behaviors (e.g., use of fans or air conditioning) as risk 

factors that influence vulnerability. Fundamentally, it has been recognized that heat-related 

mortality is largely preventable (O’Neill et al. 2009).  Accordingly, many locations, mostly across 

the developed world, have initiated HWWS over the past 15 years (e.g., Sheridan and Kalkstein 

2004).  While based on varied methodologies, these HWWS aim to assess whether forecast 

weather conditions over the coming days resemble those in the past that have led to increased 

mortality.  As part of these HWWS, mitigation activities are then initiated to reduce human 

vulnerability, such as the opening of cooling centers, providing additional water to the public, 

and discouraging outdoor labor and exercise.  These mitigation activities have been shown to 

save lives (Ebi et al. 2004). 

 

Research specific to the state of California has been somewhat limited.  Though a heat-health 

relationship broadly in line with other middle latitude locations has been identified (e.g. Basu et 

al. 2008, Anderson and Bell 2009, Sheridan et al. 2009), heat vulnerability appears to be greater 

than across the southern US, while not as great as across the midwestern and, northeastern US.  

The recent heat wave of July 2006 across the state was relatively uncommon in affecting nearly 

the entire state simultaneously, as well as having record maximum and minimum temperatures 

simultaneously (Gershunov et al. 2009).  Two recent papers have analyzed the impacts of the 

2006 event. Ostro et al. (2009) evaluated the total increase in mortality  during this event, and 

suggested that the ‘official’ heat toll of 147 deaths is an underestimate by a factor of 1.5-3.  

Moreover, their research suggested that the temperature-mortality relationship was more 

acute in the 2006 event than overall, suggesting that there is an added ‘heat wave effect’, that 

is, that the relationship between heat and mortality is non-linear, so that the population 

responds more significantly to a longer sequence of oppressive weather (Hajat et al. 2006, 
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Anderson and Bell 2009).  Knowlton et al. (2009) examined hospitalizations and emergency 

room visits during the 2006 event, and discovered significant increases statewide; interestingly, 

the largest relative increases were found in the Central Coast region, which had lower absolute 

temperatures than most other regions, suggesting that acclimatization to local climate is 

significant. 

 

1.3 – Future Factors in Human Vulnerability 

 

Moving into the future, there are several factors that may significantly affect human 

vulnerability to future heat events.  Luber (2008) is among those that broadly divides these 

factors into three categories: climate change, demographic change, and the urban heat island. 

 

Climate change.  The IPCC (Meehl et al., 2007) projects that globally, temperatures by the end 

of the 21st century when compared with the end of the 20th century are expected to be from 

1.1°C to 2.9°C higher using a relatively environmentally friendly scenario, and from 2.4°C to 

6.4°C higher using a business as usual scenario.  These mean increases show large spatial 

variability, with larger increases in general observed over land, as well as over more poleward 

latitudes.  Research has also suggested changes in atmospheric circulation, with  future climate 

change projecting onto the dominant modes of atmospheric variability such as the Arctic (AO) 

and North Atlantic (NAO) Oscillations that already affect climate over North America (Stone et 

al., 2001; Gillett et al., 2003), as well as El Niño/Southern Oscillation (ENSO)-like patterns (Boer 

et al., 2004).   

 

Specific modeling of excessive heat events in the future has been less studied; aside from global 

changes in the radiative balance, and circulation changes, other regional considerations such as 

soil moisture may play a role (Clark et al., 2006).  A key question is the role of climate 

variability, and the relative roles of changes in the mean and variance of future temperature 

patterns.  Schär et al. (2004) address this directly, in their analysis of the 2003 European heat 

event in the context of future climate scenarios, showing a nearly 100% increase in climate 

variability in future GCM scenarios relative to control runs, and a spatial pattern of temperature 

variability change which is entirely different from that of the mean temperature increase. 

Ballester et al. (2010) reach a different conclusion, suggesting future heat events will increase in 

proportion with the mean temperature increase.  Nevertheless, several studies (Stott et al. 

2004; Beniston, 2004; Beniston, 2007; Kysely 2009) suggest that with circulation changes 

associated with climate change, heat waves similar to the 2003 event be commonplace by the 

end of the 21st century. 
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Several studies have also examined future changes in heat events over North America.  As part 

of a global analysis of weather extremes, Tebaldi et al. (2006) and Meehl and Tebaldi (2004) 

show a significant increase in the frequency and intensity of heat events in the future, with 

three-day events more than 3°C warmer than present across interior California.  Clark et al. 

(2006) show a large amount of variability in predicted heat events, with the largest increases 

across the northern US, but with increases over California between 2°C and 8°C.   In the 

precursor to the present study (Hayhoe et al., 2004), heat extremes for five cities in California 

were analyzed.  By the 2090s, average heat-wave intensity inland increases at nearly double the 

rate of coastal cities under either scenario. As the total number of heat-wave days is 

approximately equal across all locations, this indicates much hotter heat waves for inland cities. 

This conclusion is also supported by their higher growth rate of extreme heat waves, which 

make up 23 to 54 percent (B1) and 56 to 84 percent (A1FI) of all heat waves by the 2090s. 

 

Demographic change.  While there is still significant uncertainty in the manifestation of climate 

change, there is less uncertainty with demographic change.  Simply, the population of much of 

the developed world, including California, is collectively aging at an unprecedented rate.  This 

aging is expected to continue into the 21st century.  Though the US population as a whole is 

projected by the Census Bureau (Census, 2010) to increase by around 41 percent from 2010 to 

2050, the population of those 65 and older is expected to more than double from 40 to over 88 

million (and comprise 20 percent of the US population); those over 85 will triple to more than 

19 million.  As the elderly are most susceptible to the heat, these changes strongly point to a 

population much more heat vulnerable than present. 

 

Urban heat island.  Due to significant land use change, infrastructure development, as well as 

the energy utilized in heating and cooling, urban areas are significantly warmer than their rural 

surroundings, by values generally up to 6°C (Brazel et al., 2007).  Around 95 percent of 

California’s population is considered “urban”, above the near 80 percent average for the US as 

a whole (Census, 2010).  Two recent studies have discovered significant correlation between 

heat island magnitude and heat vulnerability on a sub-city level: Johnson et al. (2009) for 

Philadelphia and Harlan et al. (2006) for Phoenix.  Given the significant urbanization across 

California, and the drain on energy resources that heat events have placed in the past, leading 

to blackouts and brownouts (Caruba, 2008), there is significant potential for continued 

urbanization to further burden human health. 

 

There are two sources of uncertainty with regard to future heat-related mortality estimates: 

mortality displacement (or harvesting) and acclimatization (or adaptation).  Mortality 

displacement refers to the fact that short-term mortality increases during a heat event have 

been observed to be offset somewhat by short-term mortality decreases following the event 
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(Hajat et al. 2005).  In other words, a percentage of apparent heat-related deaths were deaths 

that would have occurred soon afterwards anyway.  This effect has been estimated from near 

zero (meaning that no displacement occurs) to near total (meaning that every short-term 

increase in mortality is associated with a near-term decrease following the heat event), 

depending upon location or heat event magnitude and strength (e.g. Hajat et al. 2005, Kysely et 

al. 2009).   

 

Adaptation is another uncertainty.  Just as heat-mortality relationships in the present day are 

place-specific due to the local population acclimatizing, it is expected that the population in a 

future, warmer world could at least partially acclimatize to a changed climate (Kinney et al. 

2008).  Acclimatization can occur through multiple mechanisms.  First, there is physiological 

adaptation; as heat-related deaths are more common in areas in which excessive heat is rare 

(Kinney et al. 2008) and threshold temperatures – the point above which mortality is observed 

to rise – vary by climate (e.g. Curreiro et al. 2002), a population with a slowly warming 

background climate may at least partially acclimatize.  In addition, people may adapt through 

behavioral mechanisms, such as relying more significantly on air conditioning (e.g. O’Neill 

2003), changes to an urban structure to reduce the heat burden, or simply by changing the 

structure of their activities.  While these are all different mechanisms with different time 

frames of implementation, one difficulty in examining their efficacy is that it is difficult to utilize 

the historical record of the heat-health relationship to distinguish between these effects 

(Gosling et al. 2009), as for example, places with lower heat-related mortality both have 

warmer climates and greater incidence of air conditioning. 

 

Thus, while acclimatization as a confounder of the heat-health relationship is easy to 

conceptualize, it has been difficult to address quantitatively in existing research (Gosling et al. 

2009, Kinney et al. 2008).  As a result, there are several different approaches that have been 

taken.  An analog city method assumes that if a city’s climate changes in the future to that of a 

warmer city, then its heat-mortality relationship in the future will be similar to the warmer 

city’s (e.g. Knowlton et al. 2007).  An analog summer method assumes that a population within 

a given city responds less strongly to weather conditions in hot summers than in relatively cool 

summers, and thus future mortality estimates can be based on the historical relationship only 

during the hottest summers, as those would be most similar to future summers.  Last, there are 

fixed-value methods, in which the heat-mortality relationship is adjusted by a fixed value, e.g. 

2°C, representing a certain amount of acclimatization (e.g. Gosling et al. 2009).   

To date these methods, while producing broadly similar results in terms of percentage changes 

(discussed further in Section 1.4), cannot readily be verified as being appropriate.  Analog cities 

may not be appropriate where urban structure is dissimilar across the cities being compared, 

and in locations such as California where the unique climate yields no true analog cities.  Analog 
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summers may not be appropriate as they would not necessarily be representative of long-term 

climate drifts, only climate variability between warmer and cooler summers.  And, fixed value 

mechanisms are generally not based on some physiological reasoning but rather are 

approximations, and also assume that the heat-mortality relationship can simply be shifted on a 

temperature scale.  Among all of these methods, there are further inherent uncertainties such 

as the fact that trends in the heat-health relationship are not linear (e.g. Sheridan et al. 2009, 

Davis et al. 2002), uncertainty about the variability of the heat-health relationship if climate 

variability changes (Kinney et al. 2008), as well as the uncertainties in the modeling of adaptive 

mechanisms such as air conditioning, which will eventually reach saturation while perhaps 

relying on a tenuous electricity grid (O’Neill et al. 2003). 

 

1.4 – Other Studies on Climate Change and Heat-Related Mortality 

 

Fewer works have tried to estimate heat-related mortality in the future, although the number 

of studies has increased significantly over the last decade. A number of works have attempted 

general assessments to evaluate the offset between heat-related mortality increases and cold-

related mortality decreases, with conflicting results (e.g., Donaldson et al., 2001; Nicholls, 2009; 

Doyon et al., 2008) suggesting the offset may be place-specific or that the methodology used 

plays a critical role.  Gosling et al. (2009) also tested model performance in their estimates of 

heat-related mortality for six cities in the US and Europe.  The results varied widely, and 

suggested strongly that model bias, if unaccounted for, can lead to a significant miscalculation 

in mortality estimates. 

 

Among the research that has specifically focused on quantifying mortality from heat impacts, in 

Hayhoe et al. (2010), the Spatial Synoptic Classification was used to project future heat events 

for Chicago; 1995-like heat events increased in frequency to from 0.5 (B1 emissions scenario) to 

2.8 (A1FI) events per year by the end of the 21st century.  Correspondingly, annual heat-related 

mortality rates were expected to increase by a factor of 3.5 (B1) to over 9 (A1FI) over present 

day levels.  One study, which utilized the 2003 European heat wave as an analog for climate 

change in major U.S. cities, showed that such conditions would increase heat-related mortality 

by up to five times typical summer mortality rates (Kalkstein et al., 2008). 

 

Through the 2050s, Knowlton et al. (2007) showed a significant increase in heat-related 

mortality across the greater New York metropolitan area, from 47% to 95% depending on 

scenario used.  Analog-city acclimatization reduced heat mortality in the future by 25%.  Their 

work also analyzed the area on the county level, and showed much greater increases in the 

urban areas than the rural periphery.  Dessai (2003) in a similar time frame, showed heat-

related mortality in Lisbon increasing from 5.4 to 6 deaths/100,000 in the historical record to 
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7.3 to 35.6, with the large range in uncertainty due to model choice.  Hayhoe et al. (2004) 

showed an increase in annual heat-related mortality in Los Angeles from 165/year to 394 to 

1429/year by 2070-2099; this increase in mortality was reduced by 20% if acclimatization was 

included. 

 

There has been recent work suggesting that wider use of HWWSs will help mitigate increases of 

heat-related mortality in a globally-warmed world.  In one study for 40 U.S. cities, it is 

suggested that recent declines in heat-related mortality are largely due to the more widespread 

use of more sophisticated heat mitigation techniques, including the increased integration of 

synoptic-based HWWSs (Kalkstein et al., 2010).  A similar study shows that nationalization of 

such systems in a globally warmed world will help ameliorate some of the increases that might 

be expected from the increased frequency of extreme heat events (Greene et al., in press).  

Thus, there may be ways to mitigate the mortality numbers for California that are described 

within this project. 
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2.  MATERIALS AND METHODS 

 

2.1 – Study Area 
 

The study area for this project includes nine urbanized regions in California (Table 1; Figure 1).  

These regions in the 2000 census included 26,791,319 Californians, nearly 80 percent of the 

state total population.  They generally coincide with the US Census defined Combined Statistical 

Areas (CSA), although the two largest CSAs are subdivided for analysis due to their size and 

climatic variability.  Riverside is a metropolitan statistical area (MSA), and Los Angeles and 

Orange are both metropolitan divisions of the greater Los Angeles CSA; Oakland and San 

Francisco are both divisions of the greater San Francisco CSA.  As historical mortality data is not 

extensively available below the county level, no subdivisions below this level were made. 

 

2.2 – Materials  

 

For this project, a number of data sets were necessary: population and weather data for both 

historical periods and future projections, along with historical mortality data.  Each of these 

data sets along with the initial methods utilized to prepare the data for analysis is described 

below. 

 

2.2.1 – Historical and Future Population Data 

 

Historical population data for the state of California have been obtained from the Census 

(2010) on a county level for the years 1970, 1980, 1990, and 2000.  Data are stratified by age 

groups (in bins of no greater than 5 years), sex, and race. 

 

 

Table 1 – The nine regions utilized in this research. 

Region Largest City Counties Population (2000) 

 
Fresno 

 
Fresno 

 
Fresno, Madera 

 
922,516 

Los Angeles Los Angeles Los Angeles     9,519,338 
Oakland Oakland Alameda, Contra Costa 2,392,557 
Orange Santa Ana Orange 2,846,289 
Riverside Riverside Riverside, San Bernardino 3,254,821 
Sacramento Sacramento El Dorado, Placer, Sacramento  1,628,197 
San Diego San Diego San Diego 2,813,833 
San Francisco San Francisco Marin, San Francisco, San Mateo 1,731,183 
San Jose San Jose Santa Clara 1,682,585 
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Figure 1 – Study regions (colored counties) and SSC stations (black dots with three letter 
identifiers) used in this study. 
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Population projections were provided by the California Department of Finance (2007) for five-

year intervals from 2000 to 2100.  Population values were provided on a county level, and were 

stratified by age (in bins of 5 years), race, and sex.  Three sets of these population projections 

were used in this research, termed the low, medium, and high projections, addressing 

uncertainties in demographic changes and migration.  The projections thus vary widely in later 

years, with the California state population ranging from 47.8 million people in 2100 in the low 

projection to 147.7 million in the high projection. 

For use in this research, population values for both the historical and future periods were 

calculated for each of the nine regions in Table 1 for three age groups: under 65, 65 to 74, and 

over 74.  As population baselines were needed on an annual basis, annual values are derived by 

linear interpolation between the years provided. 

 

2.2.2 – Historical Mortality Data 

 

Historical mortality data covering the period 1975 to 2004 were acquired from the National 

Center for Health Statistics.  Mortality data for each death in California are available with 

information on county, date, age, sex, race, and cause of death.  For each of the nine regions, 

mortality totals by day in the historical period were summed up for each of the three age 

groups. 

 

2.2.3 – Historical Surface Weather Type Data 

 
Table 2 – SSC weather types 

The Spatial Synoptic Classification (SSC) is a 

station-based weather-type classification 

scheme (Sheridan, 2002), where each day is 

classified into one of six weather types (Table 

2) or a transition (TR).  These weather types 

are based on local values of temperature, dew 

point, sea-level pressure, wind speed and 

direction, and cloud cover four times daily 

(2:00 am, 8:00 am, 2:00 pm, 8:00 pm PDT).  Complete details of the procedures that comprise 

weather-type classification with the SSC can be found in Sheridan (2002). 

 

 

 

 

 

Abbreviation Weather Type 

 
DM 

 
Dry Moderate 

DP  Dry Polar 
DT Dry Tropical 
MM Moist Moderate 
MP Moist Polar 
MT  Moist Tropical 
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Table 3 – SSC stations utilized in this research and the regions for which they were utilized. 

Station Name Code Years Regions 

 
El Toro (Irvine) 

 
NZJ 

 
1975-1997 

 
Los Angeles, Orange 

Fresno FAT 1975-2002 Fresno 
Miramar (San Diego) NKX 1975-2002 San Diego 
Moffett Field (Mountain View) NUQ 1975-1999 Oakland, San Francisco, San Jose 
Riverside RIV 1975-2002 Riverside 
Sacramento SAC 1975-2002 Sacramento 

 

For this research, extensive preliminary testing was done to evaluate the most appropriate SSC 

stations to use with each region (Table 3).  The SSC surface weather type must be adequately 

predicted by upper-atmospheric circulation patterns in order for future projections to be 

appropriate.  Several airport weather stations, such as Los Angeles (LAX), San Francisco (SFO), 

and San Diego (SAN), are located directly adjacent to the coastline, and surface weather type 

can be significantly affected by a sea breeze that is difficult to predict using larger-scale 

atmospheric circulation.  Further, weather conditions at these airport locations are not 

indicative of the region as a whole.  Thus, for Los Angeles and Orange, the El Toro Marine Corps 

Air Station (MCAS) in Irvine was used; for San Diego, Miramar MCAS was used; and for the 

three Bay Area regions, Moffett Field in Mountain View was used.  As shown in the results, 

weather types at all of these stations could successfully be predicted from larger scale 

circulation patterns.   

 
Table 4 – Mean conditions for Dry Tropical and Moist Tropical weather types in April, June, and August, for the 
cities used in this study.  2pm and 2am values are temperature and dew point (°C), respectively, while Freq refers 
to the mean monthly frequency of occurrence, as a percentage of all days. 

  April June August 

Station  2pm 2am Freq 2pm 2am Freq 2pm 2am Freq 

El Toro DT 29/4 15/3 10% 34/11 20/10 4% 35/15 22/14 5% 

MT 23/12 14/11 17% 27/17 18/16 6% 29/19 21/17 20% 

Fresno DT 28/5 15/7 19% 34/10 22/10 41% 36/12 24/13 42% 

MT 21/10 15/11 1% 30/14 23/15 1% 29/15 25/14 1% 

Miramar DT 27/3 13/3 7% 33/9 19/10 3% 33/14 21/14 2% 

MT 23/13 14/11 20% 27/16 18/15 9% 29/18 20/18 23% 

Mountain 
View 

DT 25/4 14/5 14% 31/9 18/10 8% 32/10 20/12 2% 

MT 21/10 14/9 14% 26/14 18/13 6% 28/16 21/16 1% 

Riverside DT 29/1 12/3 20% 35/7 18/9 25% 36/10 21/11 39% 

MT 24/11 14/10 7% 32/15 18/14 9% 34/16 21/15 17% 

Sacramento DT 25/4 12/3 12% 34/10 19/10 23% 35/12 20/11 24% 

MT 25/12 15/12 2% 32/14 21/12 <1% 31/13 24/11 <1% 
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To correspond with the work of two of the authors (Sheridan and Kalkstein 2004), two weather 

types in particular, Dry Tropical (DT) and Moist Tropical (MT)), have most often been associated 

with increases in human mortality.  As discussed further below, the frequency of these two 

weather types was predicted for future scenarios; a sample of historical mean conditions of 

these two weather types is presented in Table 4. 

 

 

2.2.4 – Historical Atmospheric Circulation and Temperature Data 

 

One of the most common historical weather data sets available is the NCEP/NCAR reanalysis 

(NNR) data set (Kalnay et al., 1996).  This data set includes many variables for the global domain 

across many layers of the atmosphere from 1957 to the present.  Though the data are derived 

from both actual observations as well as short-term model simulations, and have some 

inherent biases, the data set is generally considered to be an appropriate representation of 

‘observed’ historical conditions, particularly for large scale atmospheric phenomena. 

 

In this research, data from the NNR data set were taken at a once daily resolution (at 1200 UTC 

– 4 AM PST) from September 1, 1957 through August 31, 2002 for the 500mb and 700mb 

geopotential height fields (500z and 700z respectively) and the 850mb temperature field (850t). 

These variables are commonly used in synoptic classifications (Sheridan and Lee, 2010; Vrac et 

al., 2007) and are considered among the more reliable variables in the NNR data set (Kalnay et 

al., 1996). These fields are also considered appropriate for the evaluation of surface heat 

events; as the geopotential height field at the 500mb level is useful for looking at the overall 

trough and ridge pattern over the study area, indicative of larger scale advection and 

subsidence in the atmosphere; the 700mb geopotential heights are strongly correlated to 

surface temperatures (Knapp, 1992); and the 850mb temperatures are a good approximation of 

surface temperature as well. Due to the unique approach used in this research, there was no a 

priori assumption as to which of the levels would most accurately correspond to surface 

weather types better than others, and thus, all three fields were included in the analysis. 

 

Data were interpolated from a 2.5° by 2.5° grid to a 5° by 5° resolution from 46°N to 26°N 

latitude and from 108°W to 128°W longitude – roughly spanning from Northern Oregon south 

into Baja California and from the Nevada/Utah border west into the Pacific Ocean. Due to the 

large amount of spatial autocorrelation of geopotential height and temperature data, the 

coarser grid is not likely to affect the results of a synoptic scale classification of circulation 

patterns. Additionally, previous synoptic research has shown better results with a more coarse 

resolution (Demuzere et al. 2009; Saunders and Byrne, 1999), Several different domains were 
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tested, and this domain was chosen as it most adequately represented surface conditions; 

larger domains included the Rocky Mountains which contain noise irrelevant to California 

climate conditions, and smaller domains could not adequately resolve larger scale circulation 

patterns. 

 

2.2.5 – Future Atmospheric Circulation and Temperature Data 

 

Future atmospheric circulation and temperature data have been acquired from two general 

circulation models (GCMs).  As GCMs each have inherent biases (e.g. Sheridan and Lee, 2010), 

two models were chosen to provide a greater robustness to the modeled results.  Both GCMs 

are recent updates to long-developed models, and model the atmosphere, land surface, sea ice, 

and oceans through dozens of levels of the atmosphere.  The first GCM used is the Community 

Climate System Model 3 (CCSM3), which is able to model stable climates for thousands of years 

under future scenarios (Collins et al., 2006).  The second model is from the Canadian Centre for 

Climate Modeling and Analysis (CCCma) and is the third generation Coupled Global Climate 

Model, or the CGCM3 (Environment Canada, 2009a, 2009b). 

 

Similarly, future projections of climate change must account for uncertainty in a number of 

socioeconomic factors, such as economic development, the pace of globalization, and 

population growth; these all affect future greenhouse-gas emissions levels, and hence 

atmospheric concentration.  The IPCC (2001) has created six different scenarios in its Special 

Reports on Emissions Scenarios (SRES) to account for the range of future emissions variability 

(Figure 2).  Three of these six are analyzed in this research.  A1FI represents a rapid, globalized 

economic development, with population reaching a plateau in mid-century (9 billion), falling to 

7 billion by 2100.  This FI subset of the A1 scenario also assumes that fossil fuels will remain as 

the most significant source of energy during the 21st century.  In contrast, the A2 scenario is 

manifest in continued technological development, albeit somewhat less than A1FI due to less 

globalization, and hence greater regional differentiation of economic development.  Population 

does not decline, but continues to climb, reaching 15 billion by 2100.  The B1 scenario is similar 

to the A1FI in that there is significant push towards globalization, although in this case, there is 

more significant environmental and social consciousness, leading to a greater amount of 

sustainable development.  Population levels plateau in mid-century, as in the A1FI scenario.  

Colloquially, A1FI is termed the “business as usual” scenario, and B1 is considered the most 

“environmentally friendly” of the three.   

 

For CCSM3, all three scenarios were used, while for CGCM3, only A2 and B1 were available.  

Thus, five total model-scenarios were analyzed.  Projections were acquired through 2099 in all 

scenarios with CCSM3, and in two windows from 2045-2064 and 2081-2100 for CGCM3.  
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Historical model runs, produced to verify the ability of GCMs to simulate present-day climate 

and climate variability, were also acquired.  The 20th Century run of the CCSM3 GCM was taken 

from the same 1957-2002 time period as the NNR data, while the CGCM3 GCM historical time 

period spanned only from 1961 to 2000.  GCM data were interpolated to the same resolution 

(5° by 5°) over the same domain (46°N to 26°N latitude and from 108°W to 128°W), and for the 

same variables at the three pressure height levels (500z, 700z, 850t). 

 

 
 

 
 

2.3  Methods 
 

 2.3.1 – Principal component analysis, cluster analysis, and circulation type 

determination – the ‘Six-step’ method 

 

Based upon previous research and after a number of permutations using trial and error, better 

correlations between the patterns created with the NNR data set and those created with a 

GCM’s 20th Century (hereafter referred to as GCM20c) data set were ultimately found only 

after ‘debiasing’ the GCM data; that is, removing the mean model bias.  This method has been 

successfully used in other literature (e.g., Hope, 2006; Lee, 2010).  For each grid point, the 

mean monthly difference between the GCM20c and the NNR data set in the historical period 

Figure 2 – SRES model scenarios used. Color schemes for each scenario will remain the same 
throughout the report (adapted from Lee, 2010). 
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was removed from the GCM historical data set.  The same difference was then subtracted from 

the relevant future scenarios.  In order to ‘debias’ the data sets, the NNR, GCM20c and GCM-

Future data sets were combined into the same spreadsheet, but were kept separate by adding 

a delineating variable that classifies each case into one of the three. These combined ‘debiased’ 

data sets were used for all further analysis. Fifteen total data sets exist – one for each of the 

three levels, and one for each of the five model scenarios (Figure 3).  

 

 
 

 

 

Originally, it was planned to use all 12 calendar months in this research.  However, as synoptic 

variability is greatest in winter months, year-round classifications tend to create more winter 

patterns at the expense of summer patterns.  Hence, a 9-month warm season (March through 

November) was delineated, and the classification was performed only on these months. 

 

The patterns were classified using a novel six-part process (Lee, 2010; Figure 4). This process is 

iterated once for each of the 15 combined (5 model-scenarios x 3 levels of atmosphere) 

Figure 3 –The fifteen data sets entered into the six-step method 
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debiased data sets (Figure 3). The process described below is an example of one iteration with 

one of the data sets (i.e. the NNR/GCM20c/CCSM3 – A1FI 500z data set).  

 
Figure 4 – Schematic of the “six-step” method utilized in this research to derive future atmospheric circulation 
types.   Red numbers in figure correspond to steps in text. 

 

Part 1 – Principal Components Analysis with NNR Data Set 

The first step in the pattern creation process is to perform a principal components analysis 

(PCA) on just the data in the NNR data set. In SPSS, each of the 25 grid points’ 500z values were 

entered as variables.  In addition to reducing total data volume, PCA in this instance creates 

completely uncorrelated variables for use in a cluster analysis in subsequent steps. Due to the 

tendency of climate data to be naturally autocorrelated – both spatially and temporally – this is 

a necessary precursor to cluster analysis in order to eliminate the possibility that some 

variables will be over-represented once entered into the clustering algorithm. The PCA creates 

principal component (PCs) scores that are added to the data set as variables. Although the total 

number of PCs to retain for further analysis is ultimately a subjective decision, this research 

uses the standard in synoptic climatology – which keeps only the PCs with eigenvalues greater 

than one (Yarnal, 1993). Several other permutations were tested in preliminary research, as 
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Cuell and Bonsal (2009) have noted that the number of PCs retained may have a significant 

impact upon final clusters.  However, among the permutations evaluated, the resulting 

classifications yielded no distinctly superior patterns that better captured the variability of the 

variable being clustered, and hence we chose the conventional rule. 

 

Part 2 – Two Step Cluster Analysis with PC Scores 

The second step was to perform a Two-Step cluster analysis (TSC) on the PC scores saved as 

new variables from the previous step. In SPSS, the PCs were entered as standardized 

continuous variables, the number of groups was specified at 10, and the group membership 

variable was saved into the data set. All other settings in SPSS were left in their defaults: the 

log-likelihood was used as the distance measure; and Schwarz’s Bayesian Criterion was used as 

the clustering criterion.  

 

Again, ultimately, the number of clusters to retain is a subjective decision. Due to the nature of 

the atmosphere, within any classification, a certain amount of variability is going to exist within 

each group. The goal of any cluster analysis is to minimize the total variance within each cluster 

and maximize the variance between clusters (Yarnal, 1993); however the utility of the 

classification must also be kept in mind as well. While permutations with fewer and more 

clusters were also tried, it was found that the 10-cluster classification was the best at resolving 

the actual atmospheric patterns important to heat events in the area of interest. 

 

Part 3 – PCA of NNR and GCM20c Data Sets 

After selecting all but the GCM-Future data, the third part of the process was to perform a 

second PCA on the 25 grid point variables of 500z values. All settings were identical to the 

settings described in part 1 above, and the PC scores were retained as new variables in the data 

set. PCA was used in this step instead of linear regression (used in step 5 below) in order to 

capture the variability of the GCM, instead of basing PC scores on just the variability that exists 

within the NNR data set.  

 

Part 4 – Discriminant Function Analysis of PC Scores 

The fourth part of the process was to perform a discriminant function analysis (DFA). DFA 

utilizes a subset of data for which group membership is already known in order to classify the 

rest of the data set into similar groups based upon the relationship of a shared set of variables 

to the group number (Wilks, 2006). In this research, the patterns of circulation had already 

been created (in Step 2 above) for a potion of the data. In order to classify additional data into 

similar groups, DFA was the most logical method to use. The relationship between the group 

numbers created in the TSC for the NNR data set (step 2) and the PCs created in step 3 were 

used to classify the rest of the data set (GCM20c). In SPSS, the PCs created in part three are the 
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dependant variables, and the TSC group number is selected as the grouping variable with the 

range set at 1 to 10. The stepwise method was used, and the F-score of Wilks’ lambda (entry at 

3.84, removal at 2.71) was the criterion used for inclusion. The classification was set to be 

based on the group sizes of the TSC groups rather than all groups being equal, and the group 

membership variable were saved into the data set. After completion of the DFA, the NNR and 

the GCM20c data were classified into groups. 

 

Part 5 – Linear Regression to Predict PC Scores for GCM Future Data 

The fifth part of the process was to perform a series of linear regressions on all three data sets 

(NNR, GCM20c and GCM Future data) in order to predict the PC scores for GCM future data. 

This linear regression was used instead of PCA in order create patterns from future data based 

upon the patterns that were already created.  A separate linear regression was performed for 

each of the principal components retained from part 3. The PC was entered into the linear 

regression as the dependent variable to be predicted, and the 25 500z values were entered as 

the independent variables. The stepwise method of regression was used with the entry 

significance level set at 0.05 and removal at 0.10, and the unstandardized predicted values 

were saved as variables into the data set. Again, this regression was repeated for each of the 

PCs retained from part 3. 

 

Part 6 – DFA with all Data 

A second DFA was performed on the entire data set in the sixth and final part of the process, 

creating the final clusters that represent the different patterns of atmospheric circulation. The 

same process used in part four above was repeated here in part six, except that the grouping 

variable in this step was the DFA cluster number that was created in part four above, and the 

dependant variables were the saved PCs (or the unstandardized predicted values) created in 

part five. Again, the group membership variable was saved into the data set – this time 

representing the final group to which each day belongs. Ultimately, the use of DFA here creates 

circulation patterns in the GCM-Future data set that are as similar as possible in shape to the 

patterns created in the NNR and GCM20c data sets. 

 

In order to better visualize the atmospheric circulation patterns created from this process, the 

mean 500z value at each of the 25 grid points was mapped for each cluster. This entire six-part 

process was then repeated for each of the other 14 combined debiased data sets.   

 

As mentioned throughout the methodology, a number of different permutations were 

attempted. After varying the months to include, the PCs to retain, the final number of clusters, 

and the domain size, the decisions outlined above reflect the patterns that most accurately 

encompass both the range and the variability of the patterns of the three variables throughout 
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the entire region and time period, and are the most successful at reproducing SSC weather 

types in later steps. 

 

 2.3.2 – Using multinomial logistic regression to predict SSC weather-type 

 

After the atmospheric circulation patterns were  created, for each of the five model scenarios 

the next task was to predict the daily SSC type for the GCM-Future data based upon the 

relationship of the atmospheric circulation patterns to SSC type in the historical NNR data set. 

Thus, the DFA cluster numbers for each of the three levels (500z, 700z, and 850t) were 

combined into the same data set, creating a total of five working data sets – one for each 

model scenario. A new data set that represents each of the six SSC stations used in this study 

was then created for each of these five data sets – creating a total of 30 data sets – one for 

each of the five model scenarios at each of the six SSC stations.  

 

Additional variables were then added to each data set (Table 5): the actual historical SSC-type 

number (DM=1, DP=2, DT=3, MM=4, MP=5, MT=6) for each station (in the NNR portion of the 

data set only); the 850t values at 36°N, 123°W and 36°N, 118°W; either an inland or a coastal  

variable that represents the time of the year (a sinusoidal curve) depending on station location; 

one day lags and one day leads of the atmospheric circulation patterns; and one day lags of 

each of the three PCs at each of the three levels. 

 

A custom multinomial logistic regression was then used in order to predict the SSC type for 

both the GCM20c portion of the data and the GCM Future portion of the data. Multinomial 

logistic regression (MLR) is able to use both continuous and categorical independent variables 

in order to predict the value of a categorical dependant variable. The custom MLR included 

different variables (Table 5) depending on whether a SSC station was considered a coastal 

station (within 80km of the coast) or an inland station (farther than 80km from the coast). 

Sacramento (SAC) and Fresno (FAT) were the only two stations that used the Inland MLR 

method, while Mountain View (NUQ), El Toro (NZJ), Miramar (NKX), and Riverside (RIV) used 

the Coastal MLR method. For each of the 30 data sets, either the Inland or the Coastal MLR 

method (described below) was used to determine future SSC types. 
 

Inland MLR Method 
  

For each station the SSC type number was used as the dependant variable to be predicted. As 

previously noted, two types of independent variables can be used – categorical and continuous. 

Thus, in SPSS, the following independent categorical variables were entered as factors into the 
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Inland MLR equation: the 850t DFA cluster number, the one day lag of 850t DFA cluster 

number, and the one day lead of the 850t DFA cluster number. 

 
Table 5 – Predictive variables for the SSC type (dependent variable).  ‘X’ in right two columns denotes their 
inclusion for coastal and inland cities. 

Variable Name Description of Variable(s) 
Used in: 

Coastal Inland 

CATEGORICAL VARIABLES 

700_DFA The DFA cluster number for 700z X   

850_DFA The DFA cluster number for 850t X X 

700_DFA_LAG The one day lag of the DFA cluster number for 700z  X   

850_DFA_LAG The one day lag of the DFA cluster number for 850t X X 

700_DFA_LEAD The one day lead of the DFA cluster number for 700z X   

850_DFA_LEAD The one day lead of the DFA cluster number for 850t X X 

MONTH The month of the case X   

CONTINUOUS VARIABLES 

500_PC1 
The three PCs created in Step 5 of the Six-Step 

Process for 500z 

X   

500_PC2 X   

500_PC3 X   

700_PC1 
The three PCs created in Step 5 of the Six-Step 

Process for 700z 

X   

700_PC2 X   

700_PC3 X   

850_PC1 
The three PCs created in Step 5 of the Six-Step 

Process for 850t 

X X 

850_PC2 X X 

850_PC3 X X 

500_PC1_LAG 

The one-day lag of the three PCs for 500z 

X   

500_PC2_LAG X   

500_PC3_LAG X   

700_PC1_LAG 

The one-day lag of the three PCs for 700z 

X   

700_PC2_LAG X   

700_PC3_LAG X   

850_PC1_LAG 

The one-day lag of the three PCs for 850t 

X X 

850_PC2_LAG X X 

850_PC3_LAG X X 

36_123 The 850t value at 36°N, 123°W  X X 

36_118 The 850t value at 36°N, 118°W  X X 

COASTAL_CURVE 
The sinusoidal curve of seasonality of coastal SSC 

stations 
X   

INLAND_CURVE 
The sinusoidal curve of seasonality of inland SSC 

stations  
  X 
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In addition to the categorical variables, several continuous variables were added into the 

equation as covariates: the three 850t PCs; the one day lag of the three 850t PCs; the 850mb 

temperature at 36°N, 123°W; and the 850mb temperature at 36°N, 118°W.  To account for 

different seasonal cycles in weather conditions (with peak temperatures occurring later in the 

year climatologically at coastal stations than inland stations), two seasonally oscillating 

variables (one for coastal cities and one for inland cities) were created that contained the sine 

of the season cycle as reflected in the SSC; with a value of 1 for the warmest weather-type day, 

and -1 for the coldest weather-type day.  The inland sinusoidal curve was thus incorporated as 

well. The ‘main effects’ of each of these variables were added into the equation. 

 

To emphasize the combined effect of two variables, the MLR was customized to include 

‘interaction terms’ in the equation. Five interaction terms were added: 1) the 850t DFA number 

and the one day lag of the 850t DFA number; 2) the 850t DFA number and the one day lead of 

the 850t DFA number; 3) the 850t DFA number and the inland sinusoidal curve; 4) the 850t DFA 

number and the 850t value at 36°N, 123°W; and 5) the 850t DFA number and the 850t value at 

36°N, 118°W. 

 

Coastal MLR Method 

After using the aforementioned Inland MLR Method for stations located close to the coast, it 

was discovered – using trial and error – that the SSC type for these stations was more 

dependent on the 700mb geopotential height pattern than the 850mb temperature pattern. 

Thus, while the dependent variable remained the same as in the Inland MLR method (the SSC 

type number for the station), in SPSS, the following independent categorical variables were 

entered as factors into the Coastal MLR equation: the 700z DFA cluster number, the 850t DFA 

cluster number, the one day lag of the 700z cluster number, the one-day lead of the 700z 

cluster number, the one day lag of the 850t cluster number, the one day lead of the 850t cluster 

number, and the month.  

 

The following continuous variables were added as covariates into this same equation: the three 

500z PCs, the three 700z PCs, the three 850t PCs, the one day lags of each of these nine PCs, 

the two 850t temperatures mentioned above, and the coastal sinusoidal curve representing the 

time of the year. With the exception of the month, the ‘main effects’ of all of the 

aforementioned terms are added to the equation. 

 

The interaction terms used in this equation are: 1) the 700z DFA number with the 700z DFA one 

day lag; 2) the 700z DFA number with the 700z DFA one day lead; 3) the 700z DFA number with 

the month; 4) the 700z DFA number with the 850t at 36°N, 123°W; and 5) the 700z DFA number 

with the 850t at 36°N, 118°W. 
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In both the Inland and the Coastal MLR method, as opposed to using the stepwise method, all 

independent variables were used as ‘forced entry’ terms into the equation. All other settings 

were left in their default setting, and the predicted category was saved as a variable into the 

data set – this variable representing the predicted daily SSC type for every day in both the 

GCM20c and the GCM Future portions of the data set. 

 

  2.3.3 – Historical mortality data: standardization and the determination of heat-

mortality relationships 

 

The daily mortality totals for each of the nine regions for each of the three age categories were 

first standardized to account for demographic changes over the 1975-2004 baseline period.  

Rates were calculated in terms of deaths per 100,000 for each of the categories.  From these 

rates, anomalous mortality rates were calculated, through standard procedures (e.g. Sheridan 

and Kalkstein, 2004) to account for both the season cycle (through an 11-day running mean 

mortality rate over the period of analysis) and long-term trends (through a 3-year running mean 

mortality rate).  From this standardization, mean anomalous mortality rates from baseline 

(‘expected’) mortality are available for each day, each region, and each age group. 

 

In order to develop the historical relationship between human mortality and weather, potential 

independent variables were developed to predict anomalous mortality (dependent variable).  

These independent variables fall into three categories: weather-type related, seasonality 

related, and temperature related. 

 

Previous research has shown that the two tropical weather-types, DT and MT, are associated 

with the most significant increase in mortality.  To correspond with the authors’ heat-health 

watch warning systems, the synoptic weather type was utilized as an important component in 

determining heat vulnerability, and thus formed the basis of regression equations that were 

derived for each region/age group (Sheridan and Kalkstein, 2004).  The SSC station used for 

each region is listed in Table 3.  As possible independent variables in the regression equations, 

four variables were derived from the SSC weather-type information, including: 

 

- A Day in Sequence (DIS) variable, which counts the number of consecutive days in which 

DT or MT occurs.  Research has shown an added ‘heat wave effect’ in human vulnerability 

to hot weather (e.g.; Hajat et al., 2006).    

- Along the same line, a binary lag DIS variable was set to 1 if the prior day was DT or MT. 

- Two individual binary variables for DT and MT, set to 1 if the weather type occurred on 

the given day.   
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As there is significant seasonal variability in the heat-health relationship (e.g. Sheridan and 

Kalkstein, 2010), due to acclimatization and/or changes in the size of the pool of susceptible 

people, two variables were created to account for the season cycle.  A time of season (TOS) 

variable was calculated; in each year, January 1st is assigned 1, and December 31st is 365.  The 

relevant sinusoidal curve (coastal or inland) discussed above was also incorporated. 

 

As there is within-weather type variability in atmospheric conditions, two continuous variables 

– the NNR 850mb temperatures at the two most relevant grid points for the state of California 

(36°N, 123°W and 36°N, 118°W) – were included as potential variables.  While surface 

temperatures are available historically, these variables were chosen specifically to correspond 

with available GCM data that is well predicted. 

 

Once all potential independent variables were calculated, regression equations were 

determined based on a stepwise entry method, using a p=0.15 threshold value.  A separate 

regression equation was produced for each age category for each region.  The final output 

model’s coefficients were utilized for the regression equation to predict future mortality. 

 

  2.3.4 – Predicting future heat-related mortality 

 

Once projections of the future daily SSC type were made, the regression equations discussed 

above – representing the relationship between SSC type and mortality in a city – were used to 

project the impacts of climate change on heat-related mortality in these cities.  Mortality 

predictions were calculated only on days for which an oppressive weather-type was present. 

Furthermore, only oppressive weather type days with forecasts for increased mortality were 

included in the calculation.  Not every oppressive weather-type day possesses increased 

mortality; some may be borderline low situations, barely making the oppressive category.  

Others may be a single day event or may occur late in the season when even oppressive days 

show little sensitivity as related to mortality variation.  The projections discussed below are in 

terms of the summed change in heat-related mortality predictions derived from these 

calculations. 

 

  2.3.5 – Predicting heat-related mortality that accounts for acclimatization 

 

For this project, we employed a new acclimatization method based on the results of recent 

research.  Given the unique climate of California’s urban areas, an analog city method would 

not be appropriate.  Our previous research (Hayhoe et al. 2004) showed varying levels of 

acclimatization from using the analog city method that were difficult to explain.  As our initial 

research in this project yielded similar results, we decided to use a different method. 
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Because of the added ‘heat wave effect’ and short-term mortality displacement discussed 

previously, in this research, we rendered acclimatization and short-term displacement by 

adjusting the day-in-sequence.  Specifically, we defined a moderate amount of acclimatization 

as neglecting all heat-related mortality that occurs in the first 1 day of a given string of 

oppressive weather type days (hereafter, DIS-2, or day in sequence of 2 or greater is counted); 

for a higher level of acclimatization, we also define heat-related mortality as omitting the first 3 

days (DIS-4).  We believe that this method captures a measure of the potential for adaptation 

to short-term heat events, where physiological and behavioral adaptations may be more 

significant, yet still evaluate the impact of longer-term heat events, where physiological and 

behavioral adaptations may be less valuable, and thus the mortality response is more 

significant. 
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3.    RESULTS 

 

3.1 – Summary of circulation patterns with the CCSM3 model 
 

The maps and discussion in section 3.1 are based on the CCSM3 model output.  For CGCM3, as 

discussed above, the same process was undertaken, although the resulting clusters are slightly 

different.  As the ultimate use of these clusters is to derive surface weather type, only CCSM3 is 

discussed here, and the CGCM3 maps can be found in Appendix A. 

 

3.1.1 – 500-mb height clusters (500z)  

 

At the 500mb level, patterns 5, 8 and 9 each exhibited a strong summer seasonality – together 

accounting for over 98% of July and August days and 46.1% of days overall (Figure 5). Featuring 

a strong ridge over the Desert Southwest, pattern 8 is the warmest of the summer patterns at 

the 500z level, occurring over half the time in July and August before dropping off markedly 

from September through November. Overall, pattern 8 was the most frequent of any 500z 

pattern, occurring an average of 18.8% of warm season days. 

 

Although pattern 9 also peaked in July and August, it occurred nearly equally in June and 

September as well (at about 25% of the days in each month), but only about 30% of the time in 

the heart of summer. This pattern features a more zonal flow than pattern 8, with the highest 

geopotential heights (which are generally associated with the highest upper-atmospheric 

temperatures)  only in the extreme southern tip of California, and occurs 14.4% of the days 

overall.  

 

Pattern 5 is more meridional than the previous two patterns, with the highest geopotential 

heights being well south and east of California. Pattern 5 peaked in June, occurring on 31% of 

the days in the month, before dropping off substantially in July, but remaining steady thereafter 

into October (occurring 13% to 18% of the time in those four months). Throughout the entire 

warm season, pattern 5 was the third most frequent pattern, occurring 13.2% of the time. 

 

Most of the other seven patterns peaked in the spring before declining or disappearing entirely 

in the summer months and reoccurring in September and October. Among the coolest of all the 

500mb level patterns is pattern 7, which features a trough just west of California. This pattern 

peaked in March and then declined in frequency steadily thereafter into June and was the least 

frequent pattern throughout the warm season, occurring only 4.2% of the time.  
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Figure 5 – Patterns of 500mb geopotential heights (left) and monthly frequency of each pattern (right) from 1957-
2002. Continued on the following page. 
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Figure 5 – Continued. 
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Figure 5 – Continued. 
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Figure 5 – Continued. 
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Figure 5 – Continued. 
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3.1.2 – 700-mb height clusters (700z)  

 

Three patterns dominated the summer scene at the 700z level (Figure 6).  It is not surprising 

that a majority of patterns occur outside the summer season; the cool season weather is always 

more variable than warm season weather, yielding a higher number of patterns.   

 

Pattern 1 was clearly the most frequent in summer at this level, occurring over 56% of time in 

July and August – more than double pattern 3 or 4 which also occurred most frequently in the 

warm season. Much like pattern 8 at 500z, pattern 1 at 700z is highlighted by a strong ridge 

over the Desert Southwest that extends into much of Southern California. After its summer 

peak, pattern 1 still occurred nearly 30% of September days and about 15% of October days as 

well. Overall, the pattern occurred over 20% of the time during the warm season.  

 

Pattern 3 can occur any time of year, but was most frequent during the warm season, when it 

occurred over 14% of the time.  However it was much more frequent than pattern 1 in the 

shoulder months of the warm season. Pattern 3 features a trough just off the coast of 

California, likely bringing more moderate temperatures to much of the state compared to 

pattern 1, which is associated with hotter conditions. Pattern 3 peaked in June, but remained 

relatively frequent from May through October.  

 

Similar in shape to pattern 3, although generally more zonal, pattern 4 at the 700z level is 

highlighted by a more pronounced summer seasonality – occurring much more frequently from 

June through August than it does in spring or autumn. Overall, pattern 4 occurred less than 10% 

of the time during the warm season. Overall, patterns 1, 3, and 4 accounted for nearly 95% of 

July and August days, and over 44% of all days in the time period. 

 

Among the remaining seven patterns at the 700z level, only patterns 2 and 5 exhibited a strong 

spring and autumn seasonality. Occurring nearly 12% of total days over the warm season, 

pattern 2 features a tilted trough running from the northeast through the southwest portions 

of the study area. Pattern 2 had dual peaks in May and October – occurring over 20% of the 

time in both months – and rarely in summer. California sits just downstream of a trough off the 

coast in pattern 5. This pattern is also highlighted by a dual peak seasonality, in May and 

September, and occurred on about 11% of days during the nine-month season.  

 

The remaining 700z patterns all featured similar seasonalities, peaking in the fringe months of 

the warm season (March and November) and occurring rarely or never over the summer. Of 

these patterns, only pattern 10 occurred on more than 10% of days during the warm season, 
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while pattern 8 occurred on only 2.3% of days – the least of any 700z pattern – never occurring 

more than 8% of the time in any single month.  Not surprisingly, most of the cooler season 

patterns demonstrated a more non-zonal flow than the summer patterns. 
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Figure 6 – Patterns of 700mb geopotential heights (left) and monthly frequency of each pattern (right) from 1957-
2002. Continued on the following page. 
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Figure 6 – Continued.  
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Figure 6 – Continued.  
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Figure 6 – Continued.  
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Figure 6 – Continued.  
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3.1.3 – 850-mb temperature clusters (850t)  

 

In contrast to the two previous levels using geopotential height data, the 850mb level 

temperature patterns showed a bit more breadth in their seasonality with six different patterns 

occurring at least 10% of the entire warm season (Figure 7). Four different 850t patterns occur 

at least 10% of days in July and August. Of those four, pattern 10 occurred the most often in 

those months at nearly 44% of the time. Much like the warmer patterns at the other two levels, 

pattern 10 features a strong ridge over Arizona and New Mexico, extending westward into 

extreme southeastern California before heights begin falling moving northwestward through 

the state. Flanking the heart of summer, pattern 10 also occurred over 18% of the time in June 

and September before dropping off substantially in frequency deeper into both the spring and 

autumn. Overall this pattern occurred 14.8% of the warm season.  

 

Pattern 8 was the next most frequent summer pattern, occurring over 22% of the time in July 

and August; and 11.3% of all days. Pattern 8 is shaped similarly to pattern 10 with the warmest 

temperatures in the Desert Southwest, although these temperatures do not reach as far west 

as in pattern 10, and comparatively, decline more rapidly towards the northwest. Pattern 8 has 

an early summer peak, occurring most often in June and July before declining steadily through 

October.  

 

Although the warmest temperatures in pattern 7 reach the farthest west of any 850t pattern, 

overall these temperatures are not as hot compared to the previous two 850t patterns. Overall, 

pattern 7 occurred about 16% of the time in July and August before actually peaking in 

September and dropping off again in October. Throughout the nine-month time period, pattern 

7 occurred less than 8% of the time. 

 

Pattern 4 was the only other pattern to occur often in summer. Although it did occur on 13.6% 

of July and August days, this pattern tended to concentrate in late-spring and early-autumn 

with dual peaks in June and September. Highlighted by a deep thermal trough running just west 

of the coastline, pattern 4 is much cooler than the previous three summer-oriented patterns 

and occurred fairly steadily from May through October – peaking in September. Together these 

four 850t patterns (patterns 10, 8, 7 and 4) combine to account for over 96% of July and August 

days. 

 

Of the remaining six patterns, most shared a shoulder month seasonality, peaking in March and 

again in November, suggesting that they might represent winter patterns that occasionally 

occur in late autumn and early spring. Exceptions to this seasonality at the 850t level were 
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patterns 3 and 9. Pattern 3 peaked in May and June before tailing off in frequency over the 

summer and then re-emerging in the early autumn. Overall, pattern 3 occurred 11% of the 

warm-season and is highlighted by sharp temperature gradients from west to east and a 

thermal high over New Mexico. Comparatively, pattern 9 was a distinctly autumn-dominant 

pattern, occurring in September (12.7%), October (30.5%) and November (11.9%) more often 

than it did in any other month. Featuring a more zonal temperature gradient across California, 

pattern 9 occurred 9.5% of the time overall.  

 

Not unexpectedly, closer to the surface, gradients increase within these categories.  Thus, the 

850mb conditions varied more greatly than those at higher altitudes.  They also better 

represent the true cores of summer heat conditions since they represent situations that exist 

more closely to the population. 
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 Figure 7 – Patterns of 850mb temperatures (left) and monthly frequency of each pattern (right) from 1957-2002. 
Continued on the following page. 
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Figure 7 – Continued.  
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Figure 7 – Continued.  
 



44 

 

 

 
Figure 7 – Continued.  
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Figure 7 – Continued.  
 



46 

 

 

3.2 – Future Circulation Type Frequencies 

 

There are important changes in the upper level patterns based on modeled results for the 

2050s and 2090s.  Some patterns that historically occurred in summer have shift seasons.  

Others become more dominant in summer (Figures 8 through 10). 

 

This shift is readily apparent in the 500mb patterns (Figure 8).  Pattern 5, which is 

predominantly summer-oriented at present, is no longer so in any of the models for the mid- or 

late-2000s.  In both the 2050s and 2090s, pattern 5 is predominantly found in the spring, with a 

secondary peak in autumn.  While pattern 5 presently exhibits the greatest frequency in June, 

the peak is shifted one month sooner and occurs between 20-40 percent of the time in May 

during future decades.  The B1 scenario, which assumes more stringent CO2 emissions controls, 

best resembles the present among all the models, but still peaks in May during future decades.   

 

Patterns 8 and 9, which represent the two other predominant summer 500mb patterns at 

present, also show important changes in frequency and seasonality in the GCM data.  Pattern 8 

is the pre-eminent summer pattern today, but decreases in frequency during the 2050s and 

2090s.  Pattern 9 becomes the most common summer pattern for the future decades, 

particularly for the 2090s, where it occurs over 90 percent of the time during peak summer 

months based on the “business as usual” scenario A1FI.  Again, not surprisingly, the B1 scenario 

shows the greatest similarity to present conditions, and under these conditions, pattern 8 

predominates in late summer, while pattern 9 is most important during early summer.   

 

There are some important shifts at 700mb as well (Figure 9).  Pattern 3 is no longer a 

predominant summer classification during either the 2050s or 2090s, and gains influence in 

spring, particularly May (at present, it is most frequent in June).  Under the A1FI scenario, this 

pattern shows a particular predominance in spring, while in the B1 scenario, the pattern 

exhibits a strong secondary peak in fall, almost as large as the spring mode.  Nevertheless, for 

all future models, pattern 3 becomes almost nonexistent in July and August.  There is also a 

shift in patterns 1 and 4, the two remaining summer patterns at 700mb.  In the 20th Century, 

pattern 1 is clearly the most important summer category, particularly in July and August, with 

more than twice the frequency of pattern 4.  During both the 2050s and 2090s, however, 

pattern 4 becomes much more important, particularly for the A1FI scenario.  With more 

emissions controls, pattern 4 becomes less common and pattern 1 re-emerges as most 

important, particularly for the B1 scenario. 
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At the 850mb level, there are four patterns that are quite frequent in summer: 4, 7, 8, and 10 

(Figure 10).  Pattern 4 presently shows a slight shoulder season peak, and this is exacerbated 

during the decades of the 2050s and 2090s.  By the latter half of the 21st Century, pattern 4 

becomes quite rare in summer, and by the 2090s is most common in May and October.   

 

At present, pattern 7 predominates in late summer and pattern 8 is most common in early 

summer.  The A1FI run shows pattern 7 peaking in August, while the more environmentally 

conscious B1 model run indicates a peak in September.  The summer frequency of pattern 8 

decreases through the 21st century.  By 2090, pattern 8 occurs about 40-50 percent of the time 

in June and almost disappears by August, making this pattern a late spring dominant pattern.   

 

Pattern 10 becomes the most important 850mb pattern during the latter decades, increasing in 

frequency by over 30 percent for the business-as-usual (A1FI) model run.  This pattern, 

demonstrating a strong ridge over the Desert Southwest, is undoubtedly associated with 

exceedingly hot conditions over Arizona and most of California.  Under the A1FI scenario, it can 

occur on up to 80 percent of the days during a typical summer, thus suggesting a large increase 

in  the frequency of excessive heat in this region. 
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Figure 8 – Monthly frequency of selected summer 500z circulation patterns in the 2050s (left) and 2090s (right). 
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Figure 9 – Monthly frequency of selected summer 700z circulation patterns in the 2050s (left) and 2090s (right). 
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Figure 10 – Monthly frequency of selected summer 850t circulation patterns in the 2050s (left) and 2090s (right). 
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3.3 – Present and Future Weather Type Frequencies 

 

An evaluation of seasonal frequencies and biases (for the entire March through November 

period) shows that both the CCSM3 and CGCM3 models duplicate reality with reasonable 

accuracy, which helps validate the future weather type frequency estimates (Tables 6 and 7).  

Comparing the actual average seasonal frequencies with the NNR and GCM20c models shows 

that rarely are they more than 5 percent apart.  In one or two cases, there are some diverging 

values (e.g. El Toro DM frequencies for all models), but well over 50 percent of the values are 

within +/– 3 percent of the observed historical frequency.  Chi-square tests on the annual mean 

frequency of SSC types show no statistically significant differences between the NNR and 

GCM20c frequencies, for either CGCM3 or CCSM3.  Statistically significant differences occur 

between the observed SSC frequencies and both models’ GCM20c output at the three coastal 

locations, and for Riverside for the CCSM3 only.  When examining the statistical differences by 

SSC type (yellow boxes in Tables 6 and 7), the majority of the cases in which differences are 

observed are the polar weather types, especially MP. Given the interest in this research is the 

frequency of tropical weather types, these differences are more critical.  Only several 

differences emerge: at Miramar, the NNR and both GCMs systematically underrepresent MT 

(p=.02 to p=.05); the CGCM3 overrepresents DT at Miramar (p = .048), and the CCSM3 

underrepresents DT at both Riverside (p = .022) and El Toro (p = .014). 

 

California covers a broad range of climates, which makes it no surprise that weather type 

frequencies vary considerably among the locales evaluated in this study (Figures 11 through 

16).  Dry tropical (DT) air dominates the summer situation in Fresno, Riverside, and Sacramento, 

while moist tropical (MT) air increases in frequency at Miramar (San Diego), Mountain View 

(Bay Area), and El Toro (Los Angeles).  In northern California, MT air has a decidedly spring 

proclivity, especially at Mountain View.  However, in southern California, which is influenced 

somewhat by the late-summer “Southwest Monsoon,” MT frequencies are biased toward the 

fall, particularly at Miramar – the southernmost SSC station used in this research.   

 

The frequencies of these two “oppressive” weather types, which are most commonly 

associated with heat-related deaths, will change dramatically if the models for future decades 

are correct.  For example, in Fresno, the summer DT weather type will be almost totally 

predominant, reaching frequencies of over 80 percent during both the 2050s and 2090s under 

all three scenarios in the CCSM3 model.  For the business as usual A1FI scenario, DT will 

approach 100 percent frequency.  Although the results are less dramatic for the CGCM3 model 

runs, DT will make up nearly 2/3 of all summer days in Fresno in the 2050s and about 80 

percent of the days in the 2090s.   MT is already rare in Fresno during summer and will remain 

that way under all scenarios.  However, there are indications that MT frequencies will increase 
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rather sharply during early spring, with projected frequency as high as 35 percent of March 

days in the 2090s in the CCSM3 A1FI scenario. 

 

At Miramar, summer DT weather type frequency will likely remain low as indicated by all the 

model scenarios, although late spring frequencies will potentially more than double to nearly 

30 to 40 percent of days by the 2090s.  However, the Southwest Monsoon effect is estimated to 

greatly increase, as indicated by the large increase in frequency of MT days in both models.  

Under CCSM3, all scenarios show a greater-than-double present-day frequency for MT in the 

August through October period, approaching and exceeding 60 percent in September in the 

2050s, and near or above 80 percent in September during the 2090s.  These numbers in the 

2090s represent a tripling or more of MT frequency, particularly for A1FI.  Although less 

dramatic, even the CGCM3 numbers indicate a substantial increase in autumn frequency of MT 

days.  Although the greatest occurrences of MT will still be in the fall, both future scenarios 

indicate a sharp increase in spring frequencies as well.   

 

Mountain View, another locale with more MT than DT days at present, will also show increases 

in DT and MT frequency, particularly in early summer MT days.  DT frequencies are only 

indicated to rise slightly, but May and June MT days are shown to rise much more dramatically.  

For example, in June at present, MT occurs about 10 percent of all days in an average summer.  

This number will rise to near 40 percent for all scenarios in the 2050s (CCSM3), and to about 50 

percent under A1FI and A2.  Although virtually no MT occurs in Mountain View presently in 

summer, it will occur with some frequency in the 2090s, particularly under CCSM3 model runs, 

where its springtime occurrence extends into early summer in the A1FI scenarios (55 percent in 

June, 21 percent in July). 

 

El Toro conditions are projected to change dramatically under all three scenarios.  DT takes on a 

strong double modal appearance for both CCSM3 and CGCM3, increasing dramatically in 

October and November (and in early spring as well in CGCM3), to frequencies as high as 25 

percent.  But the greatest increases will be in the MT weather type, which will also demonstrate 

a strong dual modal appearance.  September MT frequency will skyrocket, particularly in the 

2090s, to as much as 80 percent of days in the A1FI scenario, in comparison to less than 10 

percent of days today.  Summer MT frequencies will also increase dramatically under CGCM3, 

and the peak will be earlier in the summer, particularly in the 2090s.   

 

Riverside is already dominated by the DT weather type in all seasons, particularly midsummer.  

This will only increase, with frequencies reaching and exceeding 80 percent of the days in June 

and July.  The greatest percentage increases in DT frequencies will be in early summer.  MT 

days will also show some sizable increases, particularly in late summer and fall, where in the 
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more extreme scenarios it exceeds 20 percent of days, but will remain a rather rare weather 

type as compared to DT.   

 

Sacramento will show a similar pattern to Fresno, with sharp increases in DT presence during 

the late summer, to frequencies exceeding 80 percent of days for CCSM3 A1FI and A2.  

However, CCSM3 also indicates a very rapid upturn in MT air in spring, particularly in April, with 

frequencies approaching 60 percent of days by the 2090s. Sacramento demonstrates what all 

the cities seem to show: expected very large increases in one or both of the offensive weather 

types.  The seasonal extent in which these weather types are common will be broadened at 

virtually all locales. MT will become quite predominant in coastal areas, while DT will occur 

more predominately in inland locations.   
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2050s 2090s 2050s 2090s 2050s 2090s

DM 50.8% 46.5% -4.3% 46.8% -4.0% 34.2% 27.0% 37.8% 32.2% 41.4% 43.1%

DP 9.0% 11.3% 2.3% 11.7% 2.7% 3.0% 1.7% 5.6% 2.1% 7.0% 5.9%

DT 30.5% 28.7% -1.8% 27.6% -2.8% 48.2% 54.6% 45.1% 54.5% 40.0% 39.9%

MM 5.2% 5.1% -0.1% 6.0% 0.8% 4.5% 3.5% 4.6% 3.2% 5.0% 4.9%

MP 2.5% 6.0% 3.5% 4.9% 2.4% 1.8% 0.3% 2.4% 0.2% 3.5% 2.0%

MT 2.0% 2.4% 0.4% 2.9% 0.9% 8.3% 12.9% 4.4% 7.8% 3.1% 4.2%

DM 54.3% 53.7% -0.5% 53.7% -0.6% 38.2% 24.8% 44.1% 28.2% 47.8% 44.7%

DP 2.2% 7.2% 4.9% 7.2% 4.9% 2.2% 0.5% 2.9% 0.4% 5.6% 2.7%

DT 6.5% 9.3% 2.7% 10.0% 3.5% 15.8% 21.3% 15.7% 23.7% 12.6% 13.6%

MM 14.5% 12.2% -2.3% 12.8% -1.7% 10.5% 8.7% 10.0% 7.3% 9.8% 11.1%

MP 6.6% 7.1% 0.5% 6.6% 0.0% 1.3% 0.4% 1.9% 0.3% 3.4% 3.4%

MT 15.9% 10.6% -5.3% 9.7% -6.2% 32.0% 44.3% 25.5% 40.0% 20.8% 24.5%

DM 55.1% 59.1% 4.0% 54.4% -0.7% 43.9% 28.3% 49.0% 33.3% 50.8% 47.4%

DP 1.6% 5.2% 3.6% 5.0% 3.4% 0.8% 0.2% 2.3% 0.3% 3.7% 2.2%

DT 7.6% 10.5% 2.8% 11.1% 3.5% 13.3% 18.8% 13.2% 20.8% 12.1% 14.4%

MM 16.8% 12.0% -4.8% 14.2% -2.6% 21.8% 19.2% 18.3% 18.5% 16.8% 19.5%

MP 10.9% 4.5% -6.4% 6.1% -4.8% 1.6% 0.3% 1.6% 0.2% 2.9% 1.8%

MT 8.0% 8.8% 0.8% 9.1% 1.1% 18.6% 33.3% 15.5% 27.0% 13.6% 14.6%

DM 50.4% 67.7% 17.4% 66.1% 15.8% 57.1% 41.5% 57.0% 42.1% 63.4% 59.9%

DP 2.4% 1.1% -1.3% 1.3% -1.1% 0.3% 0.2% 0.6% 0.0% 0.6% 0.4%

DT 10.8% 7.2% -3.6% 7.7% -3.1% 10.3% 15.1% 12.7% 16.6% 10.5% 10.3%

MM 15.7% 11.9% -3.9% 13.6% -2.1% 7.4% 5.5% 9.1% 4.6% 8.8% 9.7%

MP 6.8% 3.1% -3.7% 3.4% -3.4% 0.8% 0.3% 0.8% 0.2% 2.3% 1.1%

MT 13.9% 9.1% -4.8% 7.8% -6.0% 24.1% 37.4% 19.8% 36.5% 14.4% 18.5%

DM 36.5% 34.6% -1.9% 33.7% -2.8% 24.0% 17.7% 24.9% 19.2% 28.2% 27.8%

DP 10.7% 12.0% 1.3% 11.7% 1.0% 3.5% 1.6% 5.5% 1.8% 7.5% 5.6%

DT 29.7% 33.1% 3.4% 33.0% 3.3% 55.4% 62.3% 52.9% 63.4% 45.1% 47.7%

MM 9.9% 7.9% -2.0% 9.8% -0.2% 6.6% 4.7% 6.7% 4.1% 7.4% 8.8%

MP 3.6% 6.4% 2.9% 7.0% 3.4% 1.7% 0.3% 2.1% 0.4% 4.4% 2.9%

MT 9.5% 5.9% -3.6% 4.8% -4.7% 8.9% 13.4% 7.8% 10.9% 7.3% 7.1%

DM 58.2% 53.1% -5.1% 54.8% -3.4% 34.6% 21.1% 40.3% 26.8% 46.5% 45.5%

DP 6.8% 8.7% 1.9% 8.9% 2.2% 2.3% 1.0% 4.0% 1.5% 4.2% 4.0%

DT 20.9% 19.9% -1.0% 18.3% -2.6% 36.4% 42.8% 33.3% 42.7% 29.3% 30.1%

MM 7.1% 8.0% 1.0% 9.1% 2.1% 11.0% 12.1% 9.7% 9.0% 9.5% 9.6%

MP 5.3% 5.8% 0.5% 4.4% -0.9% 1.7% 0.6% 2.6% 0.4% 3.2% 2.3%

MT 1.8% 4.5% 2.8% 4.4% 2.7% 14.0% 22.4% 10.1% 19.5% 7.3% 8.5%
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Table 6 – Weather type frequency (and model bias) for each SSC station. Historical weather type frequencies based off of 1960-1999 averages. Future 
weather type frequencies are based off of 2050-2059 (2050s) and 2090-2099 (2090s) averages in CCSM3.  Boxes in yellow represent cases where the SSC 
type frequency is statistically significantly different from the observed weather type frequency (p < .05). 
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Table 7 – Weather type frequency (and model bias) for each SSC station. Historical weather type frequencies based off of 1970-1999 
averages. Future weather type frequencies are based off of 2050-2059 (2050s) and 2090-2099 (2090s) averages in the CGCM3 global 
climate model.  Boxes in yellow represent cases where the SSC type frequency is statistically significantly different from the observed 
weather type frequency (p < .05). 

2050s 2090s 2050s 2090s

DM 50.8% 46.3% -4.5% 47.1% -3.7% 42.2% 31.9% 43.0% 39.5%

DP 9.0% 10.2% 1.2% 11.0% 2.0% 5.3% 2.2% 6.3% 4.2%

DT 30.5% 29.1% -1.4% 28.3% -2.2% 41.2% 52.6% 37.7% 41.6%

MM 5.2% 5.2% 0.0% 6.0% 0.8% 3.3% 3.3% 5.4% 6.5%

MP 2.5% 5.8% 3.3% 4.6% 2.1% 2.3% 1.2% 2.4% 1.7%

MT 2.0% 3.4% 1.4% 2.9% 0.9% 5.7% 8.8% 5.2% 6.5%

DM 54.3% 55.3% 1.1% 54.9% 0.6% 45.5% 31.5% 50.8% 45.5%

DP 2.2% 6.2% 4.0% 5.3% 3.1% 1.5% 0.5% 2.6% 2.1%

DT 6.5% 10.1% 3.6% 10.8% 4.3% 17.9% 21.4% 16.6% 16.7%

MM 14.5% 11.9% -2.6% 11.5% -3.0% 8.0% 4.9% 7.7% 8.1%

MP 6.6% 6.7% 0.0% 7.3% 0.7% 3.1% 1.0% 3.2% 3.4%

MT 15.9% 9.8% -6.1% 10.2% -5.7% 24.0% 40.6% 19.0% 24.2%

DM 55.1% 64.0% 8.9% 59.3% 4.2% 55.4% 51.2% 59.2% 54.6%

DP 1.6% 3.7% 2.1% 3.3% 1.7% 1.0% 0.1% 0.7% 0.7%

DT 7.6% 9.8% 2.2% 11.6% 4.0% 13.8% 15.6% 12.5% 13.3%

MM 16.8% 10.6% -6.2% 13.4% -3.4% 14.4% 11.9% 12.6% 14.7%

MP 10.9% 3.3% -7.6% 4.3% -6.6% 1.0% 0.1% 1.4% 0.5%

MT 8.0% 8.6% 0.6% 8.1% 0.1% 14.3% 21.1% 13.6% 16.2%

DM 50.4% 60.8% 10.4% 59.5% 9.1% 54.2% 41.5% 56.4% 54.6%

DP 2.4% 3.8% 1.4% 3.8% 1.4% 1.2% 0.6% 1.5% 1.0%

DT 10.8% 8.4% -2.4% 8.8% -2.0% 14.7% 18.7% 13.0% 14.1%

MM 15.7% 12.3% -3.4% 13.6% -2.2% 8.0% 3.8% 8.0% 8.9%

MP 6.8% 5.0% -1.8% 4.9% -1.9% 1.3% 0.3% 2.4% 1.8%

MT 13.9% 9.7% -4.2% 9.4% -4.5% 20.6% 35.2% 18.7% 19.5%

DM 36.5% 32.6% -3.9% 32.3% -4.2% 26.4% 20.3% 28.9% 25.2%

DP 10.7% 12.2% 1.5% 11.5% 0.8% 5.4% 2.1% 6.8% 4.9%

DT 29.7% 32.8% 3.1% 33.5% 3.8% 51.9% 63.2% 47.5% 51.6%

MM 9.9% 9.5% -0.5% 10.8% 0.8% 7.2% 5.1% 7.3% 9.1%

MP 3.6% 5.9% 2.3% 6.4% 2.8% 2.2% 0.7% 3.2% 2.5%

MT 9.5% 6.9% -2.6% 5.5% -4.0% 6.9% 8.7% 6.3% 6.7%

DM 58.2% 59.5% 1.2% 61.9% 3.6% 52.8% 41.2% 56.3% 52.1%

DP 6.8% 7.6% 0.8% 6.9% 0.1% 2.6% 0.4% 3.7% 2.2%

DT 20.9% 18.9% -2.0% 18.0% -2.9% 27.4% 37.4% 24.4% 27.8%

MM 7.1% 7.0% -0.1% 7.0% 0.0% 5.6% 6.6% 7.3% 8.5%

MP 5.3% 4.2% -1.0% 3.3% -2.0% 2.1% 1.0% 2.2% 2.0%

MT 1.8% 2.9% 1.1% 2.9% 1.2% 9.5% 13.4% 6.1% 7.4%
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Figure 11 –  Monthly frequency of the modeled DT and MT weather types at the Fresno SSC station in the 
2050s (left) and the 2090s (right) in all scenarios of both the CCSM3 (top four graphs) and the CGCM3 
(bottom four graphs) GCMs. 



57 

 

 

 

 

 
 

 
Figure 12 – Monthly frequency of the modeled DT and MT weather types at the Miramar SSC station in the 
2050s (left) and the 2090s (right) in all scenarios of both the CCSM3 (top four graphs) and the CGCM3 
(bottom four graphs) GCMs. 
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Figure 13 – Monthly frequency of the modeled DT and MT weather types at the Mountain View SSC station in 
the 2050s (left) and the 2090s (right) in all scenarios of both the CCSM3 (top four graphs) and the CGCM3 
(bottom four graphs) GCMs. 
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Figure 14 – Monthly frequency of the modeled DT and MT weather types at the El Toro SSC station in the 
2050s (left) and the 2090s (right) in all scenarios of both the CCSM3 (top four graphs) and the CGCM3 
(bottom four graphs) GCMs. 
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Figure 15 – Monthly frequency of the modeled DT and MT weather types at the Riverside SSC station in the 
2050s (left) and the 2090s (right) in all scenarios of both the CCSM3 (top four graphs) and the CGCM3 
(bottom four graphs) GCMs. 
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Figure 16 – Monthly frequency of the modeled DT and MT weather types at the Sacramento SSC station in 
the 2050s (left) and the 2090s (right) in all scenarios of both the CCSM3 (top four graphs) and the CGCM3 
(bottom four graphs) GCMs. 
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3.4 – Historical Weather Type – Mortality Relationships 

 

Relationships between the offensive weather types and mortality for the nine MSAs covered in 

this report indicate that there are clear-cut associations (Table 8).  The most noticeable factor is 

that the relationships are most robust for the “over 74” age group based upon the number of 

statistically significant variables present.  Variables like time of season (TOS) and day in 

sequence (DIS) show up more frequently in this age group; the TOS relationships are all 

intuitive and inverse, meaning that offensive weather type presence late in the season has a 

lesser impact on mortality than earlier in the season.  These results are supported by 

considerable research that has been done in the past (Sheridan and Kalkstein 2004).  Of the 

three times that DIS appears as statistically significant, it is directly related to mortality two 

times (San Diego under 65 and over 74), and inverse once (Oakland over 74).  The Oakland 

result is counter-intuitive, which sometimes happens in pure statistical analyses like this, and is 

one of the only counter-intuitive relationships found in this study. 

 

It is also clear that the DT weather type has a more detrimental impact on mortality than the 

other offensive weather type, MT.  It occurs in the vast majority of models and is always 

directly related to mortality.  Since these variables are applied to mortality rates (per 100,000), 

the results suggest that San Francisco, Oakland, and Los Angeles are most impacted by the 

presence of DT air, noted by the high coefficients.  This is possibly due to the general rarity of 

this weather type at these three coastal locales.  Although MT appears less frequently, Oakland 

and Orange County show clear sensitivities to the presence of this weather type.  Many of the 

coefficients for MT air in the “over 74” group are rather high, showing that this weather type, in 

a more spatially limited sense, can have a significant direct impact on mortality. 

 

The other variables, such as 850mb temperature at two specific model grid points, are less 

important in the models.  With the strong presence of the weather type dummy variables, and 

with all these relationships being direct rather than inverse, it is not surprising that, using the 

climate change models and noting the greater frequency of these weather types expected in 

the future, mortality estimates from heat should rise dramatically as the century progresses.  
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Age Group MSA Constant
DT 

Dummy

MT 

Dummy

36 N  123 

W

36 N  118 

W

Inland 

Curve

Coastal 

Curve
DIS TOS

Fresno 0

Los Angeles -0.189 0.016 0.001

Oakland 0.003 0.039 0.038

Orange County 0.002 0.015 0.041

Riverside -0.768 0.012 0.003 -0.028

Sacramento -0.548 0.002 -0.018

San Diego 0.002 0.021 0.004

San Francisco 0.0045

San Jose 0.004 0.019

Fresno 0.0383

Los Angeles -1.456 0.186 0.005

Oakland 0.0884

Orange County -0.012 0.387

Riverside 0.0511

Sacramento 0.1306

San Diego 0.024 0.179

San Francisco 0.01 0.293

San Jose 0.0466

Fresno -0.071 0.57

Los Angeles -12.48 0.841 0.74 0.044 -0.29

Oakland -12.871 1.203 1.302 0.045 -0.374 -0.148

Orange County -0.065 0.583 1.114

Riverside -0.186 0.556 0.927

Sacramento 0.299 0.74 -0.002

San Diego 0.069 0.971 0.123

San Francisco 0.362 1.266 -0.002

San Jose -10.417 0.942 0.143 -0.103 -0.004

UNDER 65

65 TO 74

OVER 74

Table 8 – Regression terms defining the relationship between mortality in each MSA and the SSC weather type 
at the corresponding SSC station. 
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3.5 – Future Heat Event Estimates 

 

Tables 9 and 10 compare the frequencies of oppressive weather type days at present (from 

both GCMs) with estimates of the number of such days under future model scenarios.  Not 

surprisingly, the numbers increase significantly for both CCSM3 and CGCM3. 

 

At present, the largest number of oppressive days occurs at the inland sites of Fresno, 

Riverside, and Sacramento, with Riverside clearly being the highest in all models.  The lowest 

number is at El Toro, with Miramar and Mountain View being rather similar in number.   

 

For consecutive day runs, there is less difference among the sites except for Riverside, which 

uniquely stands out.  Runs of 10 days or more are presently very rare at all sites; these are the 

kinds of runs which will cause the greatest amount of human stress and most frequently, the 

largest numbers of heat-related deaths (e.g. Sheridan and Kalkstein 2004, Ostro et al. 2009, 

Anderson and Bell 2009). 

 

The estimates of future offensive weather type days show increases across all cities in this 

analysis, but the differential between the locales diminishes, particularly for the 2090s.  For 

example, using present-day models, the number of offensive days varies from about the lower 

40s per season in El Toro to the low 100s at Riverside, well over double the El Toro number.  By 

the 2090s, under A1FI, the difference is relatively much smaller, from the low 140s at Mountain 

View and El Toro to just over 200 at Riverside.  Thus, all of California will experience large 

numbers of offensive days under the worst case A1FI scenario, and even under the more 

conservative scenarios. 

 

The increase in long consecutive day strings of DT and MT days is rather substantial.  Seven-day 

or longer events will more than double at the coastal sites for virtually all of the models for 

both the 2050s and 2090s.  At Miramar as an example, presently such events occur about 1.5 

times during a typical nine month season.  This will increase to 3.7 times for the most 

conservative B1 scenario in the 2050s and to 4.3 times by the 2090s.  Again, these increases 

seem steepest at the coastal locations.  Possibly even more alarming are the frequencies of 14+ 

day events, which are exceedingly rare now, and very dangerous from a human health 

standpoint.  Only at Riverside do such lengths of offensive days occur more than once a season 

at present.  By the 2090s, these 14+ day runs will occur over once a year at virtually all the 

locales under almost all the model runs (with a few exceptions for the B1 scenarios).  The 

increase in frequency is estimated at tenfold or greater at some of the coastal locations. 
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In summary, the frequencies of long consecutive day strings of offensive weather type days, 

which are responsible for most of the heat-related deaths in California and around the country 

increase dramatically in the climate change projections resulting from this research. 
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2050s 2090s 2050s 2090s 2050s 2090s

TOTAL OPP. DAYS 84.9 83.5 154.2 184.2 135.1 170.1 117.6 120.5

3-DAY + EVENTS 9.9 10.0 11.8 11.2 10.2 11.4 10.5 10.9

5-DAY + EVENTS 5.8 5.7 7.5 8.3 6.9 7.0 7.2 6.5

7-DAY + EVENTS 3.7 3.6 5.4 5.8 5.4 5.4 5.3 4.7

10-DAY + EVENTS 2.2 1.8 3.8 4.0 3.5 3.8 3.5 3.2

14-DAY + EVENTS 1.0 0.7 2.6 2.9 2.2 2.2 2.2 1.6

TOTAL OPP. DAYS 54.1 53.7 130.5 179.0 112.4 174.1 91.1 103.9

3-DAY + EVENTS 7.6 7.5 16.0 17.4 15.0 18.6 13.2 13.4

5-DAY + EVENTS 3.1 3.3 8.1 12.9 8.2 12.1 6.5 7.5

7-DAY + EVENTS 1.5 1.5 5.9 9.1 4.9 8.3 3.7 4.3

10-DAY + EVENTS 0.5 0.4 3.3 5.5 2.2 5.6 1.3 1.9

14-DAY + EVENTS 0.1 0.1 1.8 3.1 0.8 3.1 0.3 1.0

TOTAL OPP. DAYS 52.7 55.3 87.1 142.2 78.5 130.4 70.2 79.3

3-DAY + EVENTS 6.6 6.8 9.9 15.1 9.2 13.6 7.6 9.6

5-DAY + EVENTS 2.9 3.1 5.6 9.2 5.2 8.5 4.7 4.7

7-DAY + EVENTS 1.5 1.8 3.8 5.6 3.4 5.1 2.7 3.4

10-DAY + EVENTS 0.9 0.9 2.0 3.2 1.8 2.9 1.5 1.5

14-DAY + EVENTS 0.4 0.4 1.0 1.9 0.4 2.0 0.6 0.7

TOTAL OPP. DAYS 44.4 42.5 93.8 143.4 86.8 142.6 68.0 78.6

3-DAY + EVENTS 5.6 5.5 11.0 14.7 11.8 15.6 8.9 9.1

5-DAY + EVENTS 2.6 2.1 6.5 10.3 6.6 9.7 4.6 5.5

7-DAY + EVENTS 1.4 1.1 4.3 7.0 3.8 7.1 2.2 3.6

10-DAY + EVENTS 0.5 0.4 2.5 4.2 1.3 4.4 0.8 2.0

14-DAY + EVENTS 0.2 0.2 1.0 2.2 0.5 2.0 0.2 1.0

TOTAL OPP. DAYS 106.6 103.2 175.4 206.7 165.6 203.0 142.9 149.7

3-DAY + EVENTS 13.8 12.7 13.4 12.7 15.7 13.2 14.0 14.0

5-DAY + EVENTS 7.5 7.2 9.3 9.4 10.6 9.9 9.4 9.2

7-DAY + EVENTS 4.7 4.3 6.4 6.7 7.5 7.8 6.5 6.4

10-DAY + EVENTS 2.7 2.4 4.5 4.3 4.5 5.0 3.6 4.5

14-DAY + EVENTS 1.2 1.1 3.3 2.8 3.1 2.9 2.5 2.3

TOTAL OPP. DAYS 66.7 62.0 137.6 177.9 118.5 169.8 100.0 105.5

3-DAY + EVENTS 9.0 8.4 15.0 14.4 14.4 15.4 12.5 12.4

5-DAY + EVENTS 3.9 3.9 9.1 10.5 8.3 10.4 7.5 7.0

7-DAY + EVENTS 2.0 1.7 6.4 7.8 5.2 7.3 4.7 4.3

10-DAY + EVENTS 0.9 0.6 3.9 5.0 2.8 4.7 2.2 2.3

14-DAY + EVENTS 0.2 0.2 1.9 3.3 1.2 2.8 0.8 1.2
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Table 9 – Average annual heat events and total oppressive weather type days (DT or MT) in the 20th 
Century (1960-1999), 2050s (2050-2059), and 2090s (2090-2099) as modeled by the CCSM3 GCM. 



67 

 

 

 

 

 

 

 

  

2050s 2090s 2050s 2090s

TOTAL OPP. DAYS 88.7 85.3 128.1 167.7 117.2 131.5

3-DAY + EVENTS 10.2 10.4 13.2 15.5 12.7 15.3

5-DAY + EVENTS 5.9 5.6 8.1 9.8 7.6 8.7

7-DAY + EVENTS 3.9 3.4 6.0 7.3 5.0 5.2

10-DAY + EVENTS 2.1 1.6 3.7 5.0 3.3 3.5

14-DAY + EVENTS 1.1 0.8 1.8 3.2 1.6 1.8

TOTAL OPP. DAYS 54.4 57.4 114.3 169.3 97.3 111.7

3-DAY + EVENTS 8.0 8.2 16.5 18.8 13.1 14.8

5-DAY + EVENTS 3.4 2.9 8.9 12.7 7.3 8.4

7-DAY + EVENTS 1.2 1.3 5.2 8.3 3.5 4.6

10-DAY + EVENTS 0.4 0.5 1.6 4.6 1.3 2.0

14-DAY + EVENTS 0.0 0.1 0.7 2.8 0.6 0.7

TOTAL OPP. DAYS 50.1 53.8 76.8 100.2 71.3 80.5

3-DAY + EVENTS 6.9 7.1 9.7 12.7 10.0 10.0

5-DAY + EVENTS 2.4 2.9 4.4 7.3 4.3 5.0

7-DAY + EVENTS 1.1 1.4 2.4 4.0 2.2 2.8

10-DAY + EVENTS 0.5 0.4 1.2 2.1 0.7 1.4

14-DAY + EVENTS 0.2 0.1 0.4 0.6 0.2 0.2

TOTAL OPP. DAYS 49.3 49.8 96.4 147.2 86.6 91.7

3-DAY + EVENTS 6.5 6.7 13.8 17.1 10.5 12.1

5-DAY + EVENTS 3.1 2.9 7.3 11.3 6.7 6.1

7-DAY + EVENTS 1.5 1.2 3.8 8.1 4.0 3.2

10-DAY + EVENTS 0.6 0.4 1.4 4.2 1.7 1.3

14-DAY + EVENTS 0.1 0.1 0.6 2.1 0.8 0.4

TOTAL OPP. DAYS 108.5 106.5 160.6 196.3 146.8 159.2

3-DAY + EVENTS 13.0 13.2 16.2 14.3 15.4 17.4

5-DAY + EVENTS 7.8 7.2 10.4 10.6 10.5 11.5

7-DAY + EVENTS 4.9 4.4 7.5 7.6 7.5 7.6

10-DAY + EVENTS 2.8 2.6 4.6 5.0 4.7 4.0

14-DAY + EVENTS 1.2 1.3 2.5 2.9 2.2 2.9

TOTAL OPP. DAYS 59.4 57.1 100.8 138.7 83.2 96.1

3-DAY + EVENTS 8.0 7.9 14.0 16.0 10.9 13.6

5-DAY + EVENTS 3.6 3.5 7.6 10.6 5.8 6.7

7-DAY + EVENTS 2.1 1.6 3.8 7.1 3.9 3.0

10-DAY + EVENTS 0.8 0.6 1.6 3.6 1.6 1.5

14-DAY + EVENTS 0.1 0.2 0.5 1.8 0.3 0.5
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Table 10 – Average annual heat events and total oppressive weather type days (DT or MT) 
in the 20th Century (1970-1999), 2050s (2050-2059), and 2090s (2090-2099) as modeled 
by the CGCM3 GCM. 
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3.6 – Future Heat-Related Mortality Estimates 

 

Many factors must be considered when attempting to develop heat-related mortality estimates 

for the future, including assessment of population growth and demographic change through 

the 2090s, the uncertainty in the climate projections as well as the ability of GCMs in projecting 

the future climate, and the impact that a partial acclimatization may have upon these 

estimates.  

 

Figures 17 through 25 provide a range of mortality estimates assuming no acclimatization for 

different model scenarios, as well as modeled estimates for present-day heat-related mortality.   

Although there is increasing spread in the estimates as time moves along through the century, 

one thing seems to be typical to all: deaths are likely to rise considerably if the climate changes 

as indicated by the models. 

 

Fresno typifies what might happen to future heat-related mortality totals.  During an average 

summer today, the number of heat-related deaths in Fresno is in the low 20s.  Assuming the 

medium population projection, this number will increase to 132 under the “business as usual” 

A1FI scenario in the decade of the 2050s, and to about double that number in the 2090s.  Thus, 

there may be approximately a tenfold increase in mortality in Fresno during the 21st century.  

As is typically the case, the A2 and B1 scenarios, which account for some emissions controls, 

suggest smaller, but still very substantial increases. 

 

Assuming no change in the Fresno population, the results still show considerable increases, 

albeit much smaller.  Heat-related mortality is estimated to increase by 20-30 percent by the 

2050s, and slightly more than that by the 2090s for all but the B1 model. 

 

Not surprisingly, Los Angeles will potentially have the greatest number of heat-related deaths 

based on model projections.  Using the moderate population projection, Los Angeles’s mean 

summer season heat-related mortality will hover around 1500 in the 2050s under the A1Fi 

scenario.  This is approximately the average number of heat-related deaths in the entire country 

today (Kalkstein et al., 2010).  Even accounting for increased emissions controls, deaths top 

1000 for the B1 scenario in the 2050s, and reach 1500 by the 2090s, while A1FI totals are even 

higher for the 2090s.  Of course, those numbers are greatly reduced if no population change is 

assumed, but still are over 50 percent greater than present day summer season heat-related 

deaths by the 2050s using the business as usual scenario.  Like Fresno, there is the potential for 

a tenfold increase in heat-related mortality in Los Angeles by the 2090s. 
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For the remaining cities, proportional rises under the medium population projection are 

greatest through the decades for San Diego and Orange County, and least for Oakland and San 

Francisco.  This may be attributed to a faster population growth expected through the years in 

the southern California locales as compared to the Bay Area.  However, the increases are also 

greater in the south assuming no population growth (compare, for example, Oakland and 

Orange County, which exhibit similar heat-related mortality numbers today), suggesting that 

spatial variability in climate changes may be involved as well. 

 

There are other population projections that have been used in this analysis; besides the 

medium level discussed above, there are low and high population growth projections (Table 

11).  In all cases, an unsurprising result emerges: the low population projection is higher than 

the “no change” scenario but lower than the medium level projection, and the high population 

projection is about 15 percent higher than the medium projection.  While these other 

projections will not be discussed further here, it is clear that the population projection used has 

a major impact on estimated heat-related mortality, and can increase the numbers by more 

than fourfold in some situations (e.g. refer to the Los Angeles numbers and the differences 

between “none” (assuming present population) and “high”). 

 

In summary, very large increases in heat-related mortality are possible in the large California 

cities, particularly under the A1FI scenario.  However, there are sizable increases in mortality 

expected even with the most conservative model runs, with the greatest proportional rises 

occurring in southern California. 
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2000s 2010s 2020s 2030s 2040s 2050s 2060s 2070s 2080s 2090s

CCSM A1FI 21 29 44 69 92 132 165 195 236 266

CCSM A2 24 31 46 74 94 123 157 190 213 264

CCSM B1 23 29 47 69 92 109 126 154 164 192

CGCM A2 113 255

CGCM B1 102 202

ANNUAL AVERAGES

2000s 2010s 2020s 2030s 2040s 2050s 2060s 2070s 2080s 2090s

CCSM A1FI 20 22 23 25 26 32 33 34 37 36

CCSM A2 23 23 24 26 27 30 31 33 33 36

CCSM B1 22 22 25 25 26 26 25 27 26 26

CGCM A2 27 35

CGCM B1 25 27

ANNUAL AVERAGES

Figure 17 – Total projected annual future mortality under the medium population projection (left) and projected annual future mortality with steady 
population (right) for ages 65 and over for Fresno under all model scenarios (2000 -2099). Notice the change of scale in the vertical axis between the two 
graphs. Numbers represent the summed decadal totals divided by 10. 
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2000s 2010s 2020s 2030s 2040s 2050s 2060s 2070s 2080s 2090s

CCSM A1FI 239 325 532 812 1063 1511 1724 2073 2666 2997

CCSM A2 283 420 605 1057 1176 1369 1607 1945 2548 2973

CCSM B1 285 358 576 811 1189 1028 1103 1276 1371 1501

CGCM A2 1465 2890

CGCM B1 1273 1710

ANNUAL AVERAGES

2000s 2010s 2020s 2030s 2040s 2050s 2060s 2070s 2080s 2090s

CCSM A1FI 209 234 272 285 317 462 514 556 690 732

CCSM A2 250 303 309 375 350 420 478 523 660 726

CCSM B1 252 256 299 294 355 316 330 344 356 368

CGCM A2 450 707

CGCM B1 390 420

ANNUAL AVERAGES

Figure 18 – Total projected annual future mortality under the medium population projection (left) and projected annual future mortality with steady 
population (right) for ages 65 and over for Los Angeles under all model scenarios (2000 -2099). Notice the change of scale in the vertical axis between the two 
graphs. Numbers represent the summed decadal totals divided by 10. 
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2000s 2010s 2020s 2030s 2040s 2050s 2060s 2070s 2080s 2090s

CCSM A1FI 71 96 137 205 257 315 379 492 626 726

CCSM A2 79 96 146 196 256 299 357 439 530 641

CCSM B1 69 95 135 205 244 252 303 335 361 413

CGCM A2 319 579

CGCM B1 294 468

ANNUAL AVERAGES

2000s 2010s 2020s 2030s 2040s 2050s 2060s 2070s 2080s 2090s

CCSM A1FI 66 73 71 78 82 93 102 120 139 149

CCSM A2 73 73 76 74 82 88 96 107 118 132

CCSM B1 64 73 71 78 78 74 81 81 80 85

CGCM A2 94 118

CGCM B1 87 96

ANNUAL AVERAGES

Figure 19 – Total projected annual future mortality under the medium population projection (left) and projected annual future mortality with steady 
population (right) for ages 65 and over for Oakland under all model scenarios (2000 -2099). Notice the change of scale in the vertical axis between the two 
graphs. Numbers represent the summed decadal totals divided by 10. 
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2000s 2010s 2020s 2030s 2040s 2050s 2060s 2070s 2080s 2090s

CCSM A1FI 68 96 164 243 319 477 529 586 698 735

CCSM A2 81 127 192 325 361 441 515 555 695 737

CCSM B1 82 109 182 244 359 335 361 372 379 395

CGCM A2 476 742

CGCM B1 428 452

ANNUAL AVERAGES

2000s 2010s 2020s 2030s 2040s 2050s 2060s 2070s 2080s 2090s

CCSM A1FI 61 66 77 80 89 126 138 151 181 193

CCSM A2 73 88 90 109 100 118 135 143 180 194

CCSM B1 74 75 87 83 100 90 95 97 100 105

CGCM A2 128 197

CGCM B1 115 121

ANNUAL AVERAGES

Figure 20 – Total projected annual future mortality under the medium population projection (left) and projected annual future mortality with steady 
population (right) for ages 65 and over for Orange County under all model scenarios (2000 -2099). Notice the change of scale in the vertical axis between the 
two graphs. Numbers represent the summed decadal totals divided by 10. 
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2000s 2010s 2020s 2030s 2040s 2050s 2060s 2070s 2080s 2090s

CCSM A1FI 98 143 225 352 476 625 757 881 960 1063

CCSM A2 108 151 231 372 458 586 724 831 876 1021

CCSM B1 107 148 232 345 461 509 601 659 701 741

CGCM A2 563 966

CGCM B1 513 780

ANNUAL AVERAGES

2000s 2010s 2020s 2030s 2040s 2050s 2060s 2070s 2080s 2090s

CCSM A1FI 88 97 102 108 116 133 136 147 157 162

CCSM A2 97 102 105 114 112 125 131 139 143 155

CCSM B1 95 100 106 107 113 109 109 110 114 113

CGCM A2 120 147

CGCM B1 110 119

ANNUAL AVERAGES

Figure 21 – Total projected annual future mortality under the medium population projection (left) and projected annual future mortality with steady 
population (right) for ages 65 and over for Riverside under all model scenarios (2000 -2099). Notice the change of scale in the vertical axis between the two 
graphs. Numbers represent the summed decadal totals divided by 10. 



75 

 

 

            

 

 

 

 

 

2000s 2010s 2020s 2030s 2040s 2050s 2060s 2070s 2080s 2090s

CCSM A1FI 48 71 108 164 191 262 299 358 416 440

CCSM A2 49 74 116 176 196 233 275 333 394 438

CCSM B1 53 67 114 162 188 202 213 242 253 295

CGCM A2 196 368

CGCM B1 166 275

ANNUAL AVERAGES

2000s 2010s 2020s 2030s 2040s 2050s 2060s 2070s 2080s 2090s

CCSM A1FI 42 46 48 54 56 73 74 80 89 88

CCSM A2 43 48 52 57 57 65 68 75 84 88

CCSM B1 47 44 51 53 55 56 53 54 54 59

CGCM A2 55 73

CGCM B1 47 55

ANNUAL AVERAGES

Figure 22 – Total projected annual future mortality under the medium population projection (left) and projected annual future mortality with steady 
population (right) for ages 65 and over for Sacramento under all model scenarios (2000 -2099). Notice the change of scale in the vertical axis between the two 
graphs. Numbers represent the summed decadal totals divided by 10. 
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2000s 2010s 2020s 2030s 2040s 2050s 2060s 2070s 2080s 2090s

CCSM A1FI 122 153 296 466 599 916 1012 1116 1750 1865

CCSM A2 135 190 300 512 639 663 943 1056 1475 1667

CCSM B1 151 186 281 420 572 555 613 664 664 797

CGCM A2 628 1535

CGCM B1 525 750

ANNUAL AVERAGES

2000s 2010s 2020s 2030s 2040s 2050s 2060s 2070s 2080s 2090s

CCSM A1FI 114 123 163 177 194 301 311 325 496 511

CCSM A2 126 152 167 194 207 219 289 307 420 458

CCSM B1 142 149 157 161 186 183 189 194 190 220

CGCM A2 208 422

CGCM B1 173 207

ANNUAL AVERAGES

Figure 23 – Total projected annual future mortality under the medium population projection (left) and projected annual future mortality with steady 
population (right) for ages 65 and over for San Diego under all model scenarios (2000 -2099). Notice the change of scale in the vertical axis between the two 
graphs. Numbers represent the summed decadal totals divided by 10. 
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2000s 2010s 2020s 2030s 2040s 2050s 2060s 2070s 2080s 2090s

CCSM A1FI 69 82 99 121 155 178 188 200 231 226

CCSM A2 76 77 113 128 157 173 159 184 200 247

CCSM B1 61 72 104 153 167 157 143 148 165 171

CGCM A2 178 183

CGCM B1 162 161

ANNUAL AVERAGES

2000s 2010s 2020s 2030s 2040s 2050s 2060s 2070s 2080s 2090s

CCSM A1FI 65 68 62 59 65 72 86 96 103 101

CCSM A2 72 64 72 63 66 71 73 88 90 110

CCSM B1 58 60 66 76 70 64 65 71 74 76

CGCM A2 73 82

CGCM B1 66 71

ANNUAL AVERAGES

Figure 24 – Total projected annual future mortality under the medium population projection (left) and projected annual future mortality with steady 
population (right) for ages 65 and over for San Francisco under all model scenarios (2000 -2099). Notice the change of scale in the vertical axis between the two 
graphs. Numbers represent the summed decadal totals divided by 10. 
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2000s 2010s 2020s 2030s 2040s 2050s 2060s 2070s 2080s 2090s

CCSM A1FI 46 60 80 110 144 184 231 291 352 398

CCSM A2 49 55 91 111 151 172 195 259 306 411

CCSM B1 41 54 78 132 155 156 173 201 246 281

CGCM A2 187 297

CGCM B1 166 256

ANNUAL AVERAGES

2000s 2010s 2020s 2030s 2040s 2050s 2060s 2070s 2080s 2090s

CCSM A1FI 39 41 38 38 39 46 55 61 66 69

CCSM A2 42 38 45 38 41 43 46 55 58 71

CCSM B1 35 37 38 46 42 39 41 42 46 48

CGCM A2 47 51

CGCM B1 41 44

ANNUAL AVERAGES

Figure 25 – Total projected annual future mortality under the medium population projection (left) and projected annual future mortality with steady 
population (right) for ages 65 and over for San Jose under all model scenarios (2000 -2099). Notice the change of scale in the vertical axis between the two 
graphs. Numbers represent the summed decadal totals divided by 10. 
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LOW MED HIGH NONE LOW MED HIGH NONE

CCSM A1FI 110 132 153 32 176 266 385 36

CCSM A2 102 123 143 30 174 264 383 36

CCSM B1 90 109 126 26 127 192 278 26

CGCM A2 94 113 131 27 169 255 370 35

CGCM B1 85 102 119 25 133 202 293 27

HIST. AVG 15

2050s 2090s

FRESNO

LOW MED HIGH NONE LOW MED HIGH NONE

CCSM A1FI 1360 1511 2014 462 1778 2997 4499 732

CCSM A2 1229 1369 1826 420 1761 2973 4460 726

CCSM B1 924 1028 1369 316 893 1501 2250 368

CGCM A2 1314 1465 1955 450 1713 2890 4334 707

CGCM B1 1149 1273 1688 390 1014 1710 2560 420

HIST. AVG 165

2050s 2090s

LOS ANGELES

LOW MED HIGH NONE LOW MED HIGH NONE

CCSM A1FI 263 315 411 93 375 726 1089 149

CCSM A2 249 299 390 88 331 641 961 132

CCSM B1 209 252 329 74 213 413 619 85

CGCM A2 266 319 416 94 299 579 870 118

CGCM B1 245 294 383 87 242 468 703 96

HIST. AVG 49

2050s 2090s

OAKLAND

Table 11 – Mean heat-related mortality in each MSA by population projection and scenario, 2050s and 2090s. 
Continued on the next page. 
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LOW MED HIGH NONE LOW MED HIGH NONE

CCSM A1FI 414 477 625 126 508 735 1353 193

CCSM A2 382 441 577 118 509 737 1357 194

CCSM B1 290 335 438 90 273 395 724 105

CGCM A2 412 476 622 128 512 742 1362 197

CGCM B1 372 428 557 115 312 452 828 121

HIST. AVG 44

2050s 2090s

ORANGE COUNTY

LOW MED HIGH NONE LOW MED HIGH NONE

CCSM A1FI 518 625 747 133 862 1063 1914 162

CCSM A2 486 586 702 125 828 1021 1838 155

CCSM B1 422 509 608 109 602 741 1331 113

CGCM A2 467 563 674 120 784 966 1736 147

CGCM B1 425 513 611 110 633 780 1403 119

HIST. AVG 60

2050s 2090s

RIVERSIDE

LOW MED HIGH NONE LOW MED HIGH NONE

CCSM A1FI 213 262 318 73 317 440 727 88

CCSM A2 190 233 284 65 316 438 725 88

CCSM B1 165 202 246 56 213 295 488 59

CGCM A2 160 196 238 55 264 368 610 73

CGCM B1 136 166 201 47 198 275 457 55

HIST. AVG 27

2050s 2090s

SACRAMENTO

Table 11 – Continued. 
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LOW MED HIGH NONE LOW MED HIGH NONE

CCSM A1FI 810 916 1187 301 1247 1865 3163 511

CCSM A2 585 663 860 219 1116 1667 2819 458

CCSM B1 490 555 719 183 535 797 1342 220

CGCM A2 555 628 813 208 1029 1535 2592 422

CGCM B1 464 525 673 173 502 750 1266 207

HIST. AVG 68

2050s 2090s

SAN DIEGO

LOW MED HIGH NONE LOW MED HIGH NONE

CCSM A1FI 149 178 248 72 124 226 387 101

CCSM A2 145 173 242 71 136 247 424 110

CCSM B1 132 157 220 64 94 171 293 76

CGCM A2 149 178 249 73 101 183 314 82

CGCM B1 136 162 226 66 89 161 275 71

HIST. AVG 53

2050s 2090s

SAN FRANCISCO

LOW MED HIGH NONE LOW MED HIGH NONE

CCSM A1FI 145 184 241 46 169 398 594 69

CCSM A2 136 172 227 43 175 411 615 71

CCSM B1 123 156 205 39 120 281 421 48

CGCM A2 147 187 246 47 127 297 444 51

CGCM B1 131 166 218 41 109 256 383 44

HIST. AVG 27

2050s 2090s

SAN JOSE

Table 11 – Continued. 
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3.7 – Future Heat-Related Mortality Estimates with Acclimatization 

 

If the earth warms as the models forecast, there is the possibility that humans will partially 

adapt to this situation, rendering the unacclimatized estimates above as the upper limit in 

terms of heat-related mortality estimates.  We have devised two techniques to determine what 

the impacts of acclimatization might be: DIS-2 and DIS-4; both of these procedures are 

described in the Methods chapter.  Values presented in Tables 12 and 13 estimate the 

reduction in heat-related mortality utilizing these two acclimatization levels.   

 

For Fresno, using the DIS-2 acclimatization procedure, in which the heat-related mortality on 

the first day of a heat event is assumed to be offset, reductions in heat-related mortality will 

vary between 12-20 percent in the 2050s and 8-19 percent in the 2090s.  In general, the 

“business as usual” model run (A1FI) demonstrates the lowest decrease in acclimatized heat-

related mortality, while the most demanding emissions control scenarios (B1) show the largest.  

This is possibly because there are many more offensive weather type days in the business as 

usual scenario, and the number of consecutive day runs of these days will remain relatively 

high.  Los Angeles exhibits a higher decrease in mortality than Fresno under the DIS-2 

acclimatization methodology.  Reductions range from 24-34 percent in the 2050s and 17 to 31 

percent in the 2090s.  Like Fresno, the A1FI scenario shows the smallest decrease, and B1 the 

largest.  The percentage decreases under acclimatization are greater in the 2050s estimates 

than in the 2090s, because of the inherently longer duration of heat events in the 2090s. 

 

While all the cities studied show the same general characteristics, some regional differentiation 

is apparent.  The three Bay Area regions of Oakland, San Francisco, and San Jose demonstrate 

the greatest decrease in mortality attributed to acclimatization, averaging in the 30-40 percent 

range for the DIS-2 procedure.  The inland cities of Riverside, Sacramento, and Fresno show the 

smallest decreases in mortality, generally between 15 and 20 percent.  Los Angeles and Orange 

County are somewhere intermediate, and only San Diego seems to be an outlier, with similar 

smaller decreases as the inland cities. 

 

Not surprisingly, in all cities, the DIS-4 assumption, that all heat-related mortality in the first 

three days of a heat event is negated, leads to greater decreases in acclimatized mortality.  A 

regionality similar to the DIS-2 procedure exists, but in some cases (e.g. Oakland) the decreases 

approach 80 percent or slightly above for the B1 scenario. That would render Oakland’s 

acclimatized mortality similar to today’s unacclimatized heat-related mortality in that region.  

Many of the DIS-4 decreases are beyond 50 percent of the unacclimatized numbers, but slightly 

less at the inland locales. 
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Thus, we can consider the unacclimatized numbers presented in Section 3.6 as the high end 

estimates for heat-related mortality, and the DIS-4 numbers as lower end.  With few 

exceptions, even the acclimatized estimates are considerably higher than the present day levels 

of heat-related mortality in the California cities.   
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NOT ACC. ACC. DIFF % DIFF NOT ACC. ACC. DIFF % DIFF

CCSM3 A1FI 132 117 -15 -12% 266 244 -22 -8%

CCSM3 A2 123 106 -17 -14% 264 237 -27 -10%

CCSM3 B1 109 92 -16 -15% 192 162 -30 -16%

CGCM3 A2 113 93 -20 -18% 255 220 -36 -14%

CGCM3 B1 102 82 -20 -20% 202 163 -39 -19%

20c AVG. 15 11 -3 -23%

2050s 2090s

FRESNO

NOT ACC. ACC. DIFF % DIFF NOT ACC. ACC. DIFF % DIFF

CCSM3 A1FI 1511 1155 -356 -24% 2997 2474 -524 -17%

CCSM3 A2 1369 970 -399 -29% 2973 2386 -586 -20%

CCSM3 B1 1028 682 -346 -34% 1501 1112 -389 -26%

CGCM3 A2 1465 1082 -383 -26% 2890 2327 -563 -19%

CGCM3 B1 1273 933 -340 -27% 1710 1177 -533 -31%

20c AVG. 165 102 -63 -38%

2050s 2090s

LOS ANGELES

NOT ACC. ACC. DIFF % DIFF NOT ACC. ACC. DIFF % DIFF

CCSM3 A1FI 315 190 -125 -40% 726 472 -254 -35%

CCSM3 A2 299 172 -127 -42% 641 419 -223 -35%

CCSM3 B1 252 144 -108 -43% 413 248 -165 -40%

CGCM3 A2 319 183 -136 -43% 579 351 -228 -39%

CGCM3 B1 294 161 -133 -45% 468 271 -196 -42%

20c AVG. 49 28 -21 -43%

2050s 2090s

OAKLAND

NOT ACC. ACC. DIFF % DIFF NOT ACC. ACC. DIFF % DIFF

CCSM3 A1FI 477 360 -117 -25% 735 602 -132 -18%

CCSM3 A2 441 313 -128 -29% 737 587 -150 -20%

CCSM3 B1 335 219 -116 -35% 395 294 -102 -26%

CGCM3 A2 476 348 -128 -27% 742 594 -148 -20%

CGCM3 B1 428 312 -116 -27% 452 304 -148 -33%

20c AVG. 44 27 -17 -39%

2050s 2090s

ORANGE COUNTY

Table 12 – Comparison of each MSA’s non-acclimatized mortality versus the acclimatized mortality using the 
DIS-2 method. Values represent total annual mortality by MSA for the 2050s and 2090s under each model 
scenario for the medium population projection (for age 65+). GCM20c values are historical annual means from 
1980-1999. Continued on the next page. 
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NOT ACC. ACC. DIFF % DIFF NOT ACC. ACC. DIFF % DIFF

CCSM3 A1FI 625 548 -76 -12% 1063 967 -96 -9%

CCSM3 A2 586 499 -88 -15% 1021 919 -102 -10%

CCSM3 B1 509 431 -77 -15% 741 619 -122 -16%

CGCM3 A2 563 459 -104 -18% 966 851 -114 -12%

CGCM3 B1 513 421 -91 -18% 780 642 -138 -18%

20c AVG. 60 45 -14 -24%

2050s 2090s

RIVERSIDE

NOT ACC. ACC. DIFF % DIFF NOT ACC. ACC. DIFF % DIFF

CCSM3 A1FI 262 213 -49 -19% 440 384 -56 -13%

CCSM3 A2 233 179 -54 -23% 438 381 -57 -13%

CCSM3 B1 202 154 -48 -24% 295 225 -70 -24%

CGCM3 A2 196 143 -53 -27% 368 294 -73 -20%

CGCM3 B1 166 119 -47 -28% 275 198 -77 -28%

20c AVG. 27 18 -9 -34%

2050s 2090s

SACRAMENTO

NOT ACC. ACC. DIFF % DIFF NOT ACC. ACC. DIFF % DIFF

CCSM3 A1FI 916 785 -131 -14% 1865 1725 -140 -7%

CCSM3 A2 663 542 -121 -18% 1667 1526 -141 -8%

CCSM3 B1 555 451 -104 -19% 797 667 -131 -16%

CGCM3 A2 628 515 -113 -18% 1535 1387 -149 -10%

CGCM3 B1 525 421 -104 -20% 750 610 -140 -19%

20c AVG. 68 47 -20 -30%

2050s 2090s

SAN DIEGO

NOT ACC. ACC. DIFF % DIFF NOT ACC. ACC. DIFF % DIFF

CCSM3 A1FI 178 116 -62 -35% 226 162 -64 -28%

CCSM3 A2 173 106 -67 -39% 247 183 -64 -26%

CCSM3 B1 157 101 -56 -36% 171 113 -58 -34%

CGCM3 A2 178 116 -62 -35% 183 123 -60 -33%

CGCM3 B1 162 96 -66 -41% 161 107 -54 -33%

20c AVG. 53 33 -20 -37%

2050s 2090s

SAN FRANCISCO

Table 12 – Continued. 
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NOT ACC. ACC. DIFF % DIFF NOT ACC. ACC. DIFF % DIFF

CCSM3 A1FI 184 129 -55 -30% 398 302 -96 -24%

CCSM3 A2 172 116 -57 -33% 411 320 -92 -22%

CCSM3 B1 156 106 -51 -32% 281 201 -80 -29%

CGCM3 A2 187 127 -60 -32% 297 205 -92 -31%

CGCM3 B1 166 103 -62 -38% 256 176 -80 -31%

20c AVG. 27 18 -9 -33%

2050s 2090s

SAN JOSE

Table 12 – Continued. 
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NOT ACC. ACC. DIFF % DIFF NOT ACC. ACC. DIFF % DIFF

CCSM3 A1FI 132 96 -36 -27% 266 212 -54 -20%

CCSM3 A2 123 85 -38 -31% 264 201 -63 -24%

CCSM3 B1 109 70 -39 -36% 192 123 -69 -36%

CGCM3 A2 113 65 -48 -43% 255 167 -88 -35%

CGCM3 B1 102 55 -47 -46% 202 108 -94 -46%

20c AVG. 15 7 -8 -52%

2050s 2090s

FRESNO

NOT ACC. ACC. DIFF % DIFF NOT ACC. ACC. DIFF % DIFF

CCSM3 A1FI 1511 725 -786 -52% 2997 1763 -1235 -41%

CCSM3 A2 1369 539 -830 -61% 2973 1650 -1323 -45%

CCSM3 B1 1028 338 -690 -67% 1501 680 -821 -55%

CGCM3 A2 1465 598 -867 -59% 2890 1576 -1315 -45%

CGCM3 B1 1273 536 -737 -58% 1710 605 -1105 -65%

20c AVG. 165 45 -120 -73%

2050s 2090s

LOS ANGELES

NOT ACC. ACC. DIFF % DIFF NOT ACC. ACC. DIFF % DIFF

CCSM3 A1FI 315 77 -238 -75% 726 202 -524 -72%

CCSM3 A2 299 63 -236 -79% 641 178 -463 -72%

CCSM3 B1 252 56 -196 -78% 413 90 -322 -78%

CGCM3 A2 319 59 -260 -81% 579 134 -444 -77%

CGCM3 B1 294 54 -240 -82% 468 89 -379 -81%

20c AVG. 49 9 -39 -81%

2050s 2090s

OAKLAND

NOT ACC. ACC. DIFF % DIFF NOT ACC. ACC. DIFF % DIFF

CCSM3 A1FI 477 227 -249 -52% 735 437 -298 -41%

CCSM3 A2 441 178 -263 -60% 737 405 -332 -45%

CCSM3 B1 335 109 -226 -68% 395 179 -216 -55%

CGCM3 A2 476 189 -287 -60% 742 406 -335 -45%

CGCM3 B1 428 184 -245 -57% 452 154 -298 -66%

20c AVG. 44 12 -32 -74%

2050s 2090s

ORANGE COUNTY

Table 13 – Comparison of each MSA’s non-acclimatized mortality versus the acclimatized mortality using the 
DIS-4 method. Values represent total annual mortality by MSA for the 2050s and 2090s under each model 
scenario for the medium population projection (for age 65+).. GCM20c values are historical annual means from 
1980-1999. Continued on the next page. 
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NOT ACC. ACC. DIFF % DIFF NOT ACC. ACC. DIFF % DIFF

CCSM3 A1FI 625 449 -175 -28% 1063 838 -225 -21%

CCSM3 A2 586 382 -205 -35% 1021 782 -239 -23%

CCSM3 B1 509 324 -184 -36% 741 466 -275 -37%

CGCM3 A2 563 329 -234 -42% 966 702 -264 -27%

CGCM3 B1 513 302 -211 -41% 780 458 -322 -41%

20c AVG. 60 29 -31 -52%

2050s 2090s

RIVERSIDE

NOT ACC. ACC. DIFF % DIFF NOT ACC. ACC. DIFF % DIFF

CCSM3 A1FI 262 147 -114 -44% 440 309 -131 -30%

CCSM3 A2 233 111 -122 -52% 438 294 -145 -33%

CCSM3 B1 202 94 -108 -54% 295 139 -157 -53%

CGCM3 A2 196 79 -117 -60% 368 195 -173 -47%

CGCM3 B1 166 65 -101 -61% 275 102 -173 -63%

20c AVG. 27 8 -19 -71%

2050s 2090s

SACRAMENTO

NOT ACC. ACC. DIFF % DIFF NOT ACC. ACC. DIFF % DIFF

CCSM3 A1FI 916 600 -316 -34% 1865 1500 -365 -20%

CCSM3 A2 663 369 -294 -44% 1667 1287 -380 -23%

CCSM3 B1 555 303 -252 -45% 797 480 -318 -40%

CGCM3 A2 628 331 -298 -47% 1535 1135 -400 -26%

CGCM3 B1 525 274 -251 -48% 750 401 -348 -46%

20c AVG. 68 24 -44 -65%

2050s 2090s

SAN DIEGO

NOT ACC. ACC. DIFF % DIFF NOT ACC. ACC. DIFF % DIFF

CCSM3 A1FI 178 59 -119 -67% 226 98 -128 -56%

CCSM3 A2 173 46 -127 -74% 247 109 -138 -56%

CCSM3 B1 157 55 -103 -65% 171 53 -118 -69%

CGCM3 A2 178 54 -125 -70% 183 67 -116 -63%

CGCM3 B1 162 35 -127 -78% 161 49 -112 -70%

20c AVG. 53 14 -38 -73%

2050s 2090s

SAN FRANCISCO

Table 13 – Continued. 
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NOT ACC. ACC. DIFF % DIFF NOT ACC. ACC. DIFF % DIFF

CCSM3 A1FI 184 68 -115 -63% 398 190 -208 -52%

CCSM3 A2 172 54 -119 -69% 411 199 -213 -52%

CCSM3 B1 156 57 -99 -64% 281 101 -180 -64%

CGCM3 A2 187 58 -129 -69% 297 111 -186 -63%

CGCM3 B1 166 39 -126 -76% 256 79 -177 -69%

20c AVG. 27 8 -19 -69%

2050s 2090s

SAN JOSE

Table 13 – Continued. 
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4.  DISCUSSION 
 
 

The goal of this project has been to develop the most robust estimates of projected changes in 

heat-related mortality over the next century for nine major urban areas in California.  Those 

estimates are found in Chapter 3, along with estimates on frequencies of synoptic patterns, 

excessive heat event days (numbers of offensive weather type days), and unacclimatized and 

acclimatized estimates of mortality.  Of course, there are a number of uncertainties 

surrounding the mortality estimates, and they have been discussed as well.  In this chapter, we 

will try to evaluate all of the data in Chapter 3 and discuss the significance of the findings. 

 

We determined a number of synoptic patterns at the 500, 700, and 850mb levels that 

contribute to heat during the summer.  Most all of these patterns are identified as exhibiting a 

strong ridge over the western United States, which is frequently associated with descending air 

aloft and at the surface.  The ramifications of this flow are twofold: descending air inhibits cloud 

and precipitation development, and these dry conditions and increased solar radiation income 

contribute to hotter temperatures at the surface. 

 

Using the various GCM models and emissions scenarios for the 2050s and 2090s, is the results 

strongly suggest that the most extreme of these synoptic patterns, with the strongest ridge 

development, will become more predominant during these future decades.  This contributes to 

a much greater number of “offensive weather type” days, where DT and MT situations will 

predominate even more than they do today.  Not surprisingly, the dry, generally clear, and very 

hot DT weather type will become much more frequent in Fresno, Riverside, and Sacramento, 

inland locales where atmospheric moisture is relatively low.  The very warm and much more 

humid MT weather type will be more frequent in Miramar, Mountain View, and Los Angeles, 

where relative humidities are naturally higher than the more inland locales.  Of course, the 

increases in the projected frequency of these synoptic patterns vary by model and scenario, 

with the “business as usual” scenario showing the largest increases.  The range in weather type 

frequency that occurs between GCMs is significant.  For example, in Miramar, the offensive MT 

weather type can vary over 30 percent between models in the very warm month of September.  

Similar variations are found at some of the other locations.  Even if we consider this large range 

to be part of a “sensitivity analysis”, it is difficult for a decision-maker come to grips with these 

large variations among models. 

 

The regression terms regarding the relationship between mortality at each locale and SSC 

weather type show some intuitive trends but also some unexplainable ones.  For example, the 

importance of the DT weather type is very apparent, and the DT dummy variable is statistically 
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significant in 18 of the 27 regressions.  The MT variable is only important in the “over 74” 

regressions, which intuitively are the strongest models among the different age groups.  

Particularly within the “over 74” models, it seems clear that regression coefficients are highest 

among the older, more established California cities, such as Oakland, Los Angeles, and San 

Francisco.  These cities undoubtedly support a larger population of individuals who would be 

most susceptible to heat-related issues. 

 

One surprise is the comparative lack of importance of the “day in sequence” (DIS) and “time of 

season” (TOS) variables.  Each appears only three times in the 27 regression models, and most 

of these appearances are in the oldest age group models.  All the TOS variables, when 

statistically significant, are properly inversely related, indicating that heat late in the summer 

season has less of an impact on mortality than early season heat.  However, only 2 of the 3 DIS 

variables are intuitive and directly related to mortality.  This is a lower representation of these 

variables than occurs in the US cities that have synoptic heat watch-warning systems (HWWS), 

particularly those in the eastern and Midwestern United States (Sheridan and Kalkstein 2004). 

 

One important indicator of how important  climate change might be on human health is the 

evaluation of consecutive day offensive events shown in Figures 9 and 10.  In some of the 

inland locations, there is already a sizable number of long consecutive day offensive weather 

type events; for example, about 2 events of 10 or more days duration occur at present in a 

typical summer in Fresno, and over 4 of these long events occurs seasonally on average at 

Riverside.  These numbers increase predictably in the 2050s and 2090s, using all model 

scenarios.  But maybe even more problematic are the increases in frequency of these events at 

the cooler, coastal locations.  At all three coastal stations, an event of 7 days or more occurs 

slightly over 1 time per summer on average.  These numbers generally double for the 2050s and 

triple for the 2090s (even higher for A1FI) for most of the stations.   

 

We suggest that these rises in the frequency of long-duration heat events at coastal locations 

are more significant than those in the inland stations, even though there will still remain slightly 

more long events inland under the various models.  Since long consecutive day offensive events 

are so rare in Los Angeles, San Diego, and in the Bay Area, a sharp rise will most likely 

contribute to very large increases in heat-related mortality.  Intuitively, these increases should 

be larger than those found in Riverside, Fresno, and Sacramento.  It is a well-known 

bioclimatological principle that extreme meteorological events have a greater negative impact 

on humans and animals than the more frequent ones.  Thus, the inland locales are already 

exposed to a few episodes per year of at least week-long heat events; the coastal locales are 

exposed to many less today.  A tripling of such events within the coastal population centers can 

thus be expected to have an inordinate impact on heat-related mortality in those cities. 
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There are a number of uncertainties when developing the future heat-related mortality 

estimates.  Among them are: 

• The assumptions inherent in utilizing the output of GCMs, which vary considerably from 

one to another in their ability to reproduce certain features of the climate; this is also true 

about the emissions scenarios; 

• The uncertainty of how the population totals and demographics may change during the 

upcoming 50-90 years; 

• The impact of acclimatization upon the mortality estimates. 

All of these may have a significant impact on mortality estimates.  Nevertheless, there is 

certainly some value in developing these estimates, which can be used as high-, low- and mid-

bounds and can provide some range of how heat-related mortality may change in future 

decades.  A range of policy issues can then be considered, and they can be altered as the future 

situation becomes more precisely known.  However, it is important to view these numbers as 

rough projections, and they should be quoted with care to express the lack of certainty therein. 

 

Figures 17-25 demonstrate the range of estimates for the different model possibilities and 

emissions scenarios.  The range in estimates between the A1FI and B1 scenarios is highly 

variable from region to region.  For Fresno as an example, the range is relatively small, even for 

the 2090s estimates.  The B1 mortality estimate for an average summer is in the 190s, much 

higher than today’s seasonal heat-related mortality, but only within 70 deaths of the highest 

(A1FI) estimate.  The difference between the lowest and highest estimate is only 26 percent.  

Conversely, for San Diego, the range between B1 and A1FI is much larger.  In the 2090s, the B1 

scenario estimates almost 800 heat-related deaths in an average summer in San Diego, while 

the A1FI estimate is well over double, at 1865 deaths.  Interestingly, the largest ranges between 

the model estimates are found in the Southern California regions of Los Angeles, San Diego, and 

Orange County.  These all show spreads in the 2090 of double the number of estimated heat-

related deaths between the B1 and A1FI scenarios.  Conversely, the smallest variations 

between scenarios are found in the hot, dry inland cities of Fresno and Riverside.   

 

The mortality increases for the various emissions scenarios are regionally coherent as well.  For 

example, for the A1FI scenario, the greatest increases in heat-related mortality between the 

2000s and 2050s are also in the Southern California cities.  San Diego leads the group, with a 

650% rise in average summer season heat-related mortality between the present and the 

2050s.  This is followed by Orange County (601% increase) and Los Angeles (532% increase).  

The smallest increases are in Oakland (343%), San Jose (300%), and San Francisco (157%).  Of 

course, ALL the California cities exhibit a rapid rise in mortality for the A1FI scenario, but clearly 

the most dramatic of these increases are in the southern portion of the state. 
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For the B1 scenario mortality differences between the 2000s and 2050s, there is still good 

regional coherence, but the largest increases are in the hot, dry cities of Fresno (379%) and 

Riverside (375%).  The Southern California and Bay Area cities show lower increases and are 

quite similar in response (e.g. San Diego, 267%; Oakland, 265%; Los Angeles, 260%).  Again, 

while there are regional similarities, the reasons why the hot, dry cities would have the largest 

increases for the B1 scenario are not known.  Of course, the B1 mortality estimates are 

considerably lower than the A1FI. 

 

When evaluating the projected mortality increases from the 2050s to 2090s, across the board 

the percentage increases are lower than the period from the 2000s to 2050s.  There is also 

much less spatial coherence among the California cities.  For example, for the A1FI scenario, the 

city with the greatest percentage increase in heat-related mortality from the 2050s to 2090s is 

Oakland, with a 130% increase between those decades, followed by San Jose (116%).    The 

lowest percentage increase areas, Orange County (54%) and San Francisco (26%) clearly have 

little in common in terms of climate and urban structure .  For the B1 scenario, not surprisingly 

the 2050s to 2090s percentage mortality increases are considerably lower, with San Jose and 

Fresno showing the steepest increases (around 80%) and San Francisco illustrating the smallest 

(9%).  Obviously, for virtually all the cities, we can expect significant rises in heat-related 

mortality, but policy-makers will have to contend with the spread of estimates between the 

different emissions scenarios and climate models. 

 

Of course, another source of variation is the implementation of a population growth scenario.  

The figures cited above assume a medium population growth, but the numbers may vary 

greatly if the population grows faster or slower than expected (Table 11).  For the 2050s for 

Fresno, for example, assuming no population growth at all (probably an unrealistic assumption), 

only 32 people are estimated to die of heat during an average summer.  Using a high population 

growth model, this number balloons to 153 deaths.  Similar ranges are found for the other cities 

as well.  Thus, for the purposes here, and to reduce another layer of uncertainty, we have 

chosen to concentrate on the medium population projection. 

 

The final source of variation is the role of acclimatization on heat-related mortality.  Our 

procedure, which assumes that in an acclimatized world, we will react with less sensitivity 

during consecutive day runs of offensive weather type days, shows significant reductions when 

compared to the unacclimatized results.  The decreases of around 20-40 percent, as we found, 

are similar to acclimatized mortality decreases reported in other literature (Gosling et al. 2009, 

Knowlton et al. 2007).  The greatest mortality reductions will occur in the Bay Area locales, and 

the smallest will occur within the hot inland cities.  This seems intuitive, since even using our 
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DIS-2 and DIS-4 procedure, there will be a greater number of offensive days in the hottest 

cities.  This noted, there is a large level of uncertainty with the acclimatized results, as we have 

chosen a new acclimatization procedure to utilize for this research.  Not least, there is 

considerable uncertainty with regard to adaptive capacity.  Given California’s unique climate, an 

increase in heat events over coastal California within its relatively mild climate may mean that 

physiological adaptation in coastal areas will be less efficient than inland where hotter 

conditions will become more constant.  However, these same coastal locations are ones for 

which it is likely that significant increases in behavioral mechanisms (e.g., air conditioning 

prevalence) will take place, in comparison to inland locations where such mechanisms are 

already near saturation.,.   

 

The results from this analysis are generally intuitive, and cities in a similar climate environment 

generally respond similarly in terms of heat-mortality response.  However, as advised 

previously, these results should always be reviewed with caution because of the number of 

uncertainties involved, including those related to the variations among the climate models and 

various emissions scenarios.  However, even with these caveats, the numbers provide useful 

guidance in trying to determine how a changing climate will alter the number of heat-related 

deaths in major California cities. 
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5. SUMMARY AND CONCLUSIONS 
 
To help assess the impacts of climate change on human health, the goal of this project was to 

provide a range of 21st century heat-related mortality projections for nine major urban centers 

in the state of California (Table 14). Previous research has shown that increased heat-related 

mortality in each urban area can be related to the incidence of oppressive weather types – 

most notably, Dry Tropical (DT) and Moist Tropical (MT) weather types (Sheridan and Kalkstein 

2004, Sheridan et al. 2009). Based upon similar studies and the expertise of the researchers 

involved, synoptic climatological methods were utilized to incorporate the variables that 

general circulation models (GCMs) project best in order to make these estimations.  

Using 45 years of warm-season (March-November) climate data, a novel six-step method was 

utilized to develop historical mid-tropospheric circulation patterns at three levels of the 

atmosphere,  which could then be related to the oppressive weather types (DT or MT). Once an 

historical relationship between patterns and types was established, future projections of the 

frequency and seasonality of these patterns were used to determine the future occurrence of 

oppressive weather types.   

Historical relationships between weather and mortality were derived to assess potential 

impacts of heat on human mortality using data from 1975-2004 for the nine regions. Mortality 

rates accounted for weather type, weather type persistence, and seasonality, and were 

developed separately for three separate age groups.  These relationships were then utilized 

along with the future weather type projections to estimate the changes in heat-related 

mortality for each urban area. 

At both the 500 mb and 700 mb level, three warm patterns are prevalent in summer, while at 

the 850 mb level, four patterns exhibit summer seasonality. At both 500 mb and 700 mb, the 

frequency of the more zonal early-summer pattern is projected to increase in the 2050s and 

2090s, while the seasonality of these patterns broadens deeper into both the spring and 

autumn. At the 850 mb level, the disparity between the future frequency and seasonality of the 

summer patterns is not as evident, although the most frequent historical pattern does show the 

greatest increase in occurrence in future summers. At all levels, the A1FI and A2 scenarios show 

the greatest increases of the three scenarios used herein. 

The circulation pattern results carry over into the weather type results as well. The more inland 

stations (Fresno, Riverside and Sacramento) show a dramatic increase in the frequency of DT 

weather types in every month, exacerbated in the higher emissions scenarios and deeper into 

the century (Table 15). These stations also show an increase in MT frequencies in the spring and 

autumn. The stations located closer to the coast (El Toro, Miramar and Mountain View) show a 
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marked increase in MT days, while DT days are also projected to increase in most months, but 

to a lesser extent.  

These results translate into a substantial rise in prolonged heat events (Table 14). By the 2090s, 

14+ consecutive day runs of oppressive weather types are projected to occur about once a year 

at each station, while the occurrence of 10+ day heat events is projected to increase nearly 

tenfold in some locations under the higher emissions scenarios. 

Supporting previous research, the results here indicate that DT and/or MT weather types play a 

statistically significant role in increasing heat-related mortality in nearly every major urban 

center – especially for those over the age of 74. Thus, the broadened future seasonality and the 

increase in the frequency of these weather types along with the increased frequency of 

consecutive day heat events, is likely to have a substantial effect on mortality. Using the 

medium population projection, with the exception of San Francisco, all major urban centers 

could have a greater than tenfold increase in heat-related mortality in those over the age of 65 

by the 2090s (Table 5.1). Collectively, heat related mortality in the medium population 

projection would rise by more than a factor of 9, to an annual total of 4684 to 8757 deaths per 

year depending upon GCM scenario. However, much of this increase is due in large part to a 

rising and aging population. In keeping a steady (age 65+) population from 2000 through 2099, 

the increase in mortality due specifically to a warming climate is projected to be 1.9 times (San 

Francisco) to 7.5 times (San Diego) greater than current levels by the 2090s under the A1FI 

scenario. 

Two methods were developed to account for the well-documented effect of acclimatization on 

heat-related mortality – DIS-2 and DIS-4 – which eliminates the increased mortality before the 

2nd or 4th (respectively) day in a heat event. Using the DIS-2 method with the medium 

population scenario for those aged 65 and over, statewide mortality increases to between 3626 

to 7371 deaths per year, lessened by anywhere from 7% (San Diego) to 35% (Oakland) in the 

2090s with A1FI (Table 15). With the DIS-4 method, these mortality increases were lessened by 

20% (San Diego and Fresno) to 72% (Oakland), with a statewide range of 2334 to 5919. Though 

acclimatization is projected to help mitigate some heat-related mortality, it is important to note 

that despite the lessened impact, these numbers still represent overall increases in deaths due 

to a warming climate. 
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Urban Area 

Mean Annual Heat Related Mortality (Age 65+) 

20th century 2090s - Medium Growth 
2090s -                   

No Growth 

Unacclimatized Acclimatized Unacclimatized Acclimatized Unacclimatized 

Fresno 15 11 192 - 266 162 - 244 26 - 36 

Los Angeles 165 102 1501 - 2997 1112 - 2474 368 - 732 

Oakland 49 28 413 - 726 248 - 472 85 - 149 

Orange County 44 27 395 - 742 294 - 602 105 - 194 

Riverside 60 45 741 - 1063 619 - 967 113 - 162 

Sacramento 27 18 275 - 440 198 - 384 55 - 88 

San Diego 68 47 750 - 1865 610 - 1725 207 - 511 

San Francisco 53 33 161 - 247 107 - 183 71 - 110 

San Jose 27 18 256 - 411 176 - 320 44 - 69 

TOTAL 508 329 4684 - 8757 3526 - 7371 1074 - 2051 

 

 

 

 

SSC Station 

Mean Annual 

Oppressive days Heat events >10 days 

20th Cent. 2090s 20th Cent. 2090s 

El Toro 43 79 - 147 0.4 1.3 - 4.4 

Fresno 84 120 - 184 1.8 3.2 - 5.0 

Miramar 54 104 - 179 0.4 1.9 - 5.6 

Mountain View 55 79 - 142 0.9 1.4 - 3.2 

Riverside 103 150 - 207 2.4 4.0 - 5.0 

Sacramento 62 106 - 178 0.6 1.5 - 5.0 

  

Table 14 – Summary of Heat-Related Mortality Estimates by MSA. 

Table 15 – Summary of Oppressive Weather Type Days and 10+ Day 
Heat Events by MSA. 
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6. RECOMMENDATIONS 
 
Results from this study indicate that heat-related mortality in the nine major urban centers of 

California is projected to increase substantially throughout the 21st Century. The public is 

generally under-educated about the dangers of extreme heat and heat waves (Sheridan 2007, 

Kalkstein and Sheridan 2007). Because of this, many of the most vulnerable people are unaware 

of the risks associated with excessive heat events or of the proper steps to take to reduce their 

risk to heat exposure, and are uninformed about the locally funded assistance that is available 

to them, such as cooling shelters or water trucks.  

The impacts of heat on human health actually transcend the climate change issue, as heat is 

already the major weather-related killer in the United States.  Thus, many communities around 

the country already have sophisticated heat mitigation plans in place.  These not only include 

public education, as described above, but also increased interaction between stakeholders, 

politicians, and the local National Weather Service office.  Some of these plans are found 

online; for example, look at Philadelphia’s online heat resources: 

http://www.phila.gov/Health/keepingCool.html   (main website) 

http://www.phila.gov/Health/pdfs/heat_flyer.pdf  (distributed to residents of Philadelphia so 

they know what to do during a heat wave) 

http://www.phila.gov/Health/pdfs/StayCool.pdf  (more detailed advice) 

 

The National Weather Service has partnered with local health departments, utility companies, 

and the U.S. EPA to develop a system of heat watch/warning systems (HWWS) at various 

Weather Forecast Offices in the country.  These systems provide guidance to forecasters, based 

upon the same types of synoptic models used in this research, to inform them which days are 

most dangerous to human health, and to suggest when to call excessive heat warnings and 

advisories.  We strongly recommend that systems like these are developed for every weather 

forecast office in California, irrespective of the impacts of climate change. 

 

Many communities have a heat-health task force presently in existence.  These might also exist 

in a number of California cities, but it is probable that most cities do not have the stakeholder 

collaboration to develop such a task force.  We recommend that every major California city 

have a heat-health task force.  In most cities, these meet several times a year, especially before 

the heat season, to coordinate activities and to update the efficiency of mitigation plans.  We 

would be glad to provide assistance, if asked, to develop such urban task forces, since we’ve 

had great experience doing this in the past. 

 

http://www.phila.gov/Health/keepingCool.html
http://www.phila.gov/Health/pdfs/heat_flyer.pdf
http://www.phila.gov/Health/pdfs/StayCool.pdf
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Awareness, education, and intervention are the keywords to lessen heat-related mortality now 

and in a potentially warmer world.  In the state of California, much can be done to improve all 

three of these items, and hopefully this analysis has pointed to the significance of the 

heat/health issue in the state, both presently and in the future. 
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GLOSSARY 

 

500z – Geopotential height values (in meters) at which the atmospheric pressure is estimated 

to be 500 millibars. 

700z – Geopotential height values (in meters) at which the atmospheric pressure is estimated 

to be 700 millibars. 

850t – Air temperature values (in °C) at the 850 millibar pressure surface 

A1FI – An extreme, non environmentally-friendly, emissions scenario for GCM model runs 

(sometimes referred to as the ‘business as usual’ scenario). 

A2 – An intermediate emissions scenario for GCM model runs  

AO – Arctic Oscillation  

AOGCM – Atmospheric and Oceanic General Circulation Model – referred to normally as a GCM 

B1 – A conservative, environmentally-friendly, emissions scenario for GCM model runs  

CCSM3 – The Community Climate System Model 3, a coupled atmospheric and oceanic GCM 

from the  

CDC – Centers for Disease Control and Prevention 

CGCM3 – The Coupled Global Climate Model – version 3   

CSA – Combined Statistical Area 

Debias – The process of removing the mean monthly model bias at each grid point from a 

GCM’s 20th Century data set and applying it to all of the same GCM’s future data sets. 

DFA – Discriminant Function Analysis 

DIS – Day in Sequence. The number of consecutive days on which an oppressive (DT or MT) 

weather type occurred 

DIS-2 – A method of accounting for acclimatization, where mortality from the first day of a heat 

event is ignored and only the increased mortality from the second day forward is 

included 
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DIS-4 – A method of accounting for acclimatization, where mortality from the first three days of 

a heat event is ignored, and only the increased mortality from the fourth day forward 

is included 

DM – Dry Moderate weather type 

DP – Dry Polar weather type 

DT – Dry Tropical weather type 

ENSO – El Nino / Southern Oscillation 

FAT – The Fresno SSC station code 

GCM – Global Climate Model or General Circulation Model 

GCM20c – The 20th Century data from a GCM 

HWWS – Heat Watch Warning System 

IPCC – Intergovernmental Panel on Climate Change 

MLR – Multinomial Logistic Regression 

MM – Moist Moderate weather type 

MP – Moist Polar weather type 

MSA – Metropolitan Statistical Area 

MT – Moist Tropical weather type 

NAO – North Atlantic Oscillation 

NKX – The Miramar SSC station code 

NCAR – National Center for Atmospheric Research 

NCEP – National Centers for Environmental Prediction 

NNR – The NCEP/NCAR Reanalysis data set 

NUQ – The Mountain View SSC station code 
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Oppressive Weather type – Any tropical SSC weather type – either Dry Tropical (DT ) or Moist 

Tropical (MT) 

NZJ – The El Toro SSC station code 

PC – A principal component score created from a PCA 

PCA – Principal Component Analysis 

RIV – The Riverside SSC station code 

SAC – The Sacramento SSC station code 

SPSS – The Statistical software package used for analysis in this report 

SRES – Special Reports on Emissions Scenarios 

SSC – The Spatial Synoptic Classification 

TOS – Time of Season. The day of the year. 

TSC – The Two-Step Cluster analysis  
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APPENDIX A 

 

The maps and graphs in Appendix A represent the synoptic circulation patterns and the 

monthly frequency of the CGCM3 global climate model. The 500z and 700z patterns are in 

meters, while the 850t patterns are in terms of °C. Contours for the 500z patterns are in 60m 

intervals, for 700z at 30m intervals, and for 850t at 2°C intervals. The bar graphs show the 

monthly frequency of each pattern in the GCM20c portion of the results (as averaged over the 

years 1970-1999) and the 2090s in the A2 and B1 scenarios.  
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CGCM3 500z Patterns and Seasonality 

 

 

Figure A.1 – CGCM3 500z patterns and monthly frequency. Continued on the next page. 
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Figure A.1 – continued 
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Figure A.1 – continued 
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Figure A.1 – continued 
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Figure A.1 – continued 
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CGCM3 700z Patterns and Seasonality 

 

 

Figure A.2 – CGCM3 700z patterns and monthly frequency. Continued on the next page. 
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Figure A.2 – continued  
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Figure A.2 – continued  



119 

 

 

 

Figure A.2 – continued  
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Figure A.2 – continued  
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CGCM3 850t Patterns and Seasonality 

 

 

Figure A.3 – CGCM3 850t patterns and monthly frequency. Continued on the next page. 
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Figure A.3 – continued  
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Figure A.3 – continued  
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Figure A.3 – continued  
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Figure A.3 – continued  
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APPENDIX B 

 

The tables in Appendix B represent the mean monthly frequency of the CCSM3 and CGCM3 

patterns created at each level – both in the GCM20c portion of the results, and in the 2050s or 

2090s. The first three tables are of the 500z, 700z and 850t patterns (respectively) in the CCSM3 

for the 2050s. The next three are for CCSM3 in the 2090s. Those six tables are then repeated in 

the same order for the CGCM3 global climate model.
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GCM20c A1FI A2 B1 GCM20c A1FI A2 B1 GCM20c A1FI A2 B1 GCM20c A1FI A2 B1 GCM20c A1FI A2 B1

MAR 19.5% 10.6% 12.6% 15.8% 20.3% 9.0% 3.9% 13.2% 20.2% 13.5% 25.5% 27.1% 9.5% 27.7% 27.7% 14.8% 1.2% 7.7% 6.8% 2.3%

APR 17.1% 8.7% 7.0% 13.7% 9.5% 0.3% 1.7% 7.3% 21.5% 24.0% 23.3% 18.7% 12.1% 27.7% 25.0% 19.0% 2.8% 15.0% 10.3% 8.0%

MAY 4.9% 0.0% 0.3% 1.3% 1.5% 0.0% 0.0% 0.0% 12.1% 2.3% 3.5% 7.4% 12.6% 6.8% 10.3% 11.9% 12.7% 33.5% 34.8% 29.4%

JUN 1.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 1.4% 0.0% 0.0% 0.0% 5.7% 2.0% 1.7% 1.3% 25.8% 11.7% 12.7% 20.7%

JUL 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.6% 0.0% 0.0% 0.0% 11.0% 0.0% 0.6% 1.9%

AUG 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.3% 0.0% 0.0% 0.0% 0.6% 0.0% 0.0% 0.0% 11.4% 0.0% 2.6% 3.2%

SEP 0.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 1.3% 0.0% 0.7% 0.0% 6.8% 1.0% 2.7% 3.7% 18.2% 11.7% 14.3% 18.7%

OCT 6.0% 1.0% 0.0% 3.5% 1.0% 0.0% 0.0% 0.0% 6.8% 1.3% 1.0% 1.0% 14.4% 9.7% 14.8% 25.5% 13.2% 11.0% 15.8% 13.2%

NOV 16.0% 3.7% 5.7% 12.7% 5.1% 0.7% 1.0% 2.7% 13.7% 10.0% 11.3% 8.0% 27.3% 42.0% 36.7% 38.7% 5.1% 12.0% 14.3% 5.0%

GCM20c A1FI A2 B1 GCM20c A1FI A2 B1 GCM20c A1FI A2 B1 GCM20c A1FI A2 B1 GCM20c A1FI A2 B1

MAR 9.3% 9.0% 6.8% 11.3% 15.4% 1.0% 4.5% 9.7% 0.0% 1.6% 2.3% 0.6% 0.6% 11.6% 4.5% 1.3% 4.0% 8.1% 5.5% 3.9%

APR 19.8% 8.3% 6.3% 13.0% 9.3% 3.0% 3.0% 6.7% 1.3% 0.3% 2.0% 1.3% 0.8% 6.0% 6.3% 4.0% 5.8% 6.7% 15.0% 8.3%

MAY 30.6% 2.9% 6.8% 9.0% 4.7% 0.0% 0.0% 0.6% 5.6% 11.6% 18.1% 13.9% 6.7% 38.7% 22.3% 19.7% 8.6% 4.2% 3.9% 6.8%

JUN 10.5% 0.0% 0.0% 2.7% 0.0% 0.0% 0.0% 0.0% 17.7% 5.7% 5.0% 17.3% 36.3% 80.7% 80.7% 58.0% 2.8% 0.0% 0.0% 0.0%

JUL 0.8% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 57.3% 23.2% 21.3% 36.5% 30.6% 76.8% 78.1% 61.6% 0.3% 0.0% 0.0% 0.0%

AUG 0.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 60.8% 23.9% 38.7% 43.2% 27.3% 76.1% 58.7% 53.5% 0.3% 0.0% 0.0% 0.0%

SEP 6.4% 0.0% 0.0% 0.7% 0.3% 0.0% 0.0% 0.3% 39.3% 21.3% 20.3% 35.0% 21.6% 66.0% 61.3% 41.0% 6.2% 0.0% 0.7% 0.7%

OCT 15.6% 1.3% 0.0% 1.9% 1.4% 0.0% 0.0% 0.0% 17.0% 21.0% 24.2% 18.4% 11.5% 50.6% 39.0% 30.6% 13.4% 4.2% 5.2% 5.8%

NOV 12.8% 2.3% 4.7% 6.7% 3.8% 1.7% 2.0% 1.7% 2.4% 5.3% 0.7% 2.7% 3.1% 14.0% 17.0% 8.3% 10.8% 8.3% 6.7% 13.7%

1 2

CCSM3 - 500mb - 2050s

9 106 7 8

3 4 5

Table B.1 – The mean monthly frequency of the 10 CCSM3 synoptic patterns created at the 500z level. GCM20c percentages are based off of 1960-1999 
averages. Future model scenarios are based off of 2050-2059 averages. 
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GCM20c A1FI A2 B1 GCM20c A1FI A2 B1 GCM20c A1FI A2 B1 GCM20c A1FI A2 B1 GCM20c A1FI A2 B1

MAR 1.0% 5.5% 4.2% 1.6% 10.5% 13.9% 9.4% 10.3% 2.7% 5.8% 2.3% 3.9% 2.1% 16.5% 9.0% 3.2% 6.4% 6.8% 3.9% 6.8%

APR 3.3% 4.3% 7.0% 4.0% 14.8% 13.0% 20.0% 18.3% 6.0% 9.7% 7.7% 6.0% 1.5% 7.7% 6.0% 2.7% 10.3% 6.0% 3.7% 10.0%

MAY 8.1% 20.3% 13.9% 16.8% 23.9% 12.9% 11.0% 11.0% 16.1% 23.5% 32.3% 29.0% 2.8% 33.9% 18.1% 15.5% 17.2% 2.6% 7.4% 9.0%

JUN 22.0% 20.7% 26.7% 26.3% 11.4% 0.3% 1.0% 4.0% 36.3% 9.7% 13.7% 23.3% 13.7% 68.3% 56.7% 39.7% 10.7% 0.3% 0.3% 6.0%

JUL 67.4% 47.1% 48.7% 60.0% 0.4% 0.0% 0.0% 0.0% 15.9% 0.0% 0.0% 2.9% 15.1% 52.9% 51.3% 37.1% 1.9% 0.0% 0.0% 0.0%

AUG 67.8% 59.7% 68.4% 73.9% 1.5% 0.0% 0.0% 0.0% 19.3% 0.3% 2.9% 6.1% 8.9% 40.0% 28.7% 20.0% 2.6% 0.0% 0.0% 0.0%

SEP 36.6% 53.0% 48.3% 56.3% 13.1% 0.3% 2.0% 6.3% 23.5% 12.0% 15.0% 22.0% 2.3% 32.7% 30.0% 8.0% 16.8% 0.0% 2.0% 4.0%

OCT 19.1% 35.5% 37.7% 26.8% 16.2% 8.7% 9.7% 14.5% 15.3% 9.0% 14.2% 16.1% 4.6% 35.5% 24.5% 17.1% 15.9% 3.5% 1.3% 1.9%

NOV 6.2% 11.3% 5.0% 7.7% 14.0% 12.0% 10.3% 15.7% 7.1% 6.7% 9.7% 5.7% 5.3% 19.7% 25.7% 10.7% 7.6% 2.3% 3.0% 4.3%

GCM20c A1FI A2 B1 GCM20c A1FI A2 B1 GCM20c A1FI A2 B1 GCM20c A1FI A2 B1 GCM20c A1FI A2 B1

MAR 16.3% 12.9% 21.6% 21.3% 16.6% 4.5% 8.1% 11.6% 10.1% 1.3% 2.3% 3.9% 19.2% 11.0% 9.7% 15.5% 15.1% 21.9% 29.7% 21.9%

APR 14.6% 22.7% 17.3% 11.0% 11.4% 4.0% 5.7% 11.3% 5.4% 0.3% 2.3% 3.7% 14.1% 9.0% 7.3% 11.3% 18.6% 23.3% 23.0% 21.7%

MAY 10.4% 3.2% 7.7% 7.4% 4.2% 0.0% 0.3% 1.0% 1.6% 0.0% 0.0% 0.3% 4.4% 0.0% 1.0% 2.6% 11.4% 3.5% 8.4% 7.4%

JUN 1.7% 0.0% 0.7% 0.0% 0.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 1.0% 0.0% 0.0% 0.0% 3.8% 0.7% 1.0% 0.7%

JUL 0.6% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.6% 0.0% 0.0% 0.0%

AUG 1.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.3% 0.0% 0.0% 0.0%

SEP 3.0% 1.3% 1.3% 1.0% 0.8% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 1.0% 0.0% 0.0% 0.0% 3.6% 0.7% 1.3% 2.3%

OCT 7.4% 3.2% 3.5% 3.9% 2.5% 0.3% 0.0% 1.6% 1.4% 0.0% 0.0% 0.0% 6.3% 1.0% 1.0% 4.5% 11.6% 3.2% 8.1% 13.5%

NOV 12.6% 18.3% 18.7% 7.7% 5.8% 1.0% 0.7% 4.0% 3.3% 1.7% 0.7% 1.3% 12.8% 4.7% 7.0% 14.3% 25.3% 22.3% 19.3% 28.7%

106 7 8 9

CCSM3 - 700mb - 2050s
1 2 3 4 5

Table B.2 – The mean monthly frequency of the 10 CCSM3 synoptic patterns created at the 700z level. GCM20c percentages are based off of 1960-1999 
averages. Future model scenarios are based off of 2050-2059 averages. 
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GCM20c A1FI A2 B1 GCM20c A1FI A2 B1 GCM20c A1FI A2 B1 GCM20c A1FI A2 B1 GCM20c A1FI A2 B1

MAR 10.2% 6.8% 13.5% 16.8% 23.5% 16.1% 29.7% 23.5% 3.0% 17.4% 9.4% 4.8% 0.5% 2.3% 0.3% 0.3% 44.2% 22.9% 26.1% 37.1%

APR 21.8% 17.7% 17.3% 13.3% 19.4% 10.0% 20.7% 16.0% 15.8% 36.7% 18.0% 23.3% 3.8% 8.0% 4.0% 3.7% 24.4% 13.0% 15.0% 25.3%

MAY 13.1% 1.3% 3.5% 3.9% 8.1% 0.0% 2.9% 1.6% 30.8% 31.0% 38.4% 36.5% 16.7% 19.0% 19.7% 14.8% 6.5% 0.0% 0.0% 4.2%

JUN 0.7% 0.0% 0.0% 0.0% 0.7% 0.0% 0.0% 0.0% 26.4% 8.7% 7.7% 9.3% 10.7% 5.3% 3.3% 9.0% 0.0% 0.0% 0.0% 0.0%

JUL 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 3.3% 0.0% 0.0% 0.3% 5.7% 0.0% 0.0% 1.6% 0.0% 0.0% 0.0% 0.0%

AUG 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 2.7% 0.0% 0.0% 0.0% 9.4% 0.3% 1.0% 3.5% 0.3% 0.0% 0.0% 0.0%

SEP 0.6% 0.0% 0.3% 0.0% 2.0% 0.0% 0.0% 0.3% 12.3% 3.7% 5.0% 5.3% 15.3% 10.7% 13.0% 15.7% 1.1% 0.0% 0.7% 0.7%

OCT 2.6% 0.6% 0.6% 0.3% 10.6% 2.3% 4.8% 8.4% 12.1% 6.8% 9.4% 11.0% 8.0% 9.4% 3.5% 2.6% 11.9% 3.9% 2.6% 9.4%

NOV 3.0% 4.3% 2.0% 0.3% 28.8% 25.3% 26.0% 32.3% 1.7% 12.0% 9.0% 3.0% 0.3% 1.7% 0.0% 0.7% 24.8% 15.3% 17.7% 15.0%

GCM20c A1FI A2 B1 GCM20c A1FI A2 B1 GCM20c A1FI A2 B1 GCM20c A1FI A2 B1 GCM20c A1FI A2 B1

MAR 14.8% 4.8% 6.8% 7.1% 0.0% 0.6% 1.0% 0.0% 0.0% 6.5% 0.3% 0.3% 4.2% 22.3% 12.9% 10.0% 0.0% 0.3% 0.0% 0.0%

APR 3.9% 0.7% 2.0% 2.7% 0.6% 1.3% 0.3% 0.3% 0.7% 2.0% 4.0% 1.3% 9.2% 9.0% 17.0% 12.7% 1.1% 1.7% 1.7% 1.3%

MAY 0.3% 0.0% 0.0% 0.0% 2.1% 3.2% 3.9% 0.6% 6.5% 22.9% 16.1% 18.7% 12.1% 2.3% 4.2% 8.4% 4.0% 20.3% 11.3% 11.3%

JUN 0.3% 0.0% 0.0% 0.0% 2.6% 2.0% 2.7% 4.7% 29.9% 44.0% 44.0% 37.0% 4.8% 0.0% 0.3% 1.3% 24.6% 40.0% 42.0% 38.7%

JUL 0.0% 0.0% 0.0% 0.0% 9.4% 12.6% 5.5% 12.6% 28.7% 10.6% 13.9% 20.0% 0.4% 0.0% 0.0% 0.0% 52.6% 76.8% 80.6% 65.5%

AUG 0.0% 0.0% 0.0% 0.0% 14.0% 19.4% 22.3% 18.4% 16.5% 5.5% 7.7% 8.1% 1.9% 0.0% 0.0% 0.0% 55.3% 74.8% 69.0% 70.0%

SEP 0.3% 0.0% 0.0% 0.0% 23.6% 20.0% 10.3% 23.0% 10.7% 13.7% 19.0% 12.7% 13.5% 1.3% 2.0% 4.7% 20.8% 50.7% 49.7% 37.7%

OCT 4.6% 0.3% 0.6% 1.9% 11.2% 16.5% 11.6% 9.0% 4.4% 14.5% 20.6% 11.6% 30.9% 16.1% 29.7% 34.8% 3.7% 29.7% 16.5% 11.0%

NOV 27.4% 10.7% 17.7% 24.3% 2.0% 1.0% 0.0% 0.7% 0.4% 2.7% 1.7% 0.3% 13.3% 26.7% 26.0% 23.3% 0.0% 0.3% 0.0% 0.0%

6 7 8 9 10

CCSM3 - 850mb - 2050s
1 2 3 4 5

Table B.3 – The mean monthly frequency of the 10 CCSM3 synoptic patterns created at the 850t level. GCM20c percentages are based off of 1960-1999 
averages. Future model scenarios are based off of 2050-2059 averages. 
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GCM20c A1FI A2 B1 GCM20c A1FI A2 B1 GCM20c A1FI A2 B1 GCM20c A1FI A2 B1 GCM20c A1FI A2 B1

MAR 19.5% 1.9% 4.8% 16.1% 20.3% 0.3% 0.3% 16.1% 20.2% 8.1% 11.3% 17.1% 9.5% 37.1% 34.5% 15.8% 1.2% 16.1% 11.6% 3.9%

APR 17.1% 3.7% 6.0% 10.3% 9.5% 0.7% 0.0% 3.0% 21.5% 9.3% 11.0% 19.7% 12.1% 34.7% 37.0% 21.7% 2.8% 26.0% 20.3% 9.0%

MAY 4.9% 0.0% 0.0% 1.9% 1.5% 0.0% 0.0% 0.3% 12.1% 1.0% 1.3% 7.1% 12.6% 11.0% 7.7% 17.1% 12.7% 35.5% 40.0% 22.3%

JUN 1.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 1.4% 0.0% 0.0% 0.3% 5.7% 0.0% 0.0% 2.0% 25.8% 7.3% 4.7% 10.3%

JUL 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.6% 0.0% 0.0% 0.0% 11.0% 0.0% 0.0% 3.2%

AUG 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.3% 0.0% 0.0% 0.0% 0.6% 0.0% 0.0% 0.0% 11.4% 0.0% 0.0% 2.3%

SEP 0.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 1.3% 0.0% 0.0% 0.0% 6.8% 0.3% 2.0% 2.7% 18.2% 2.3% 3.7% 16.0%

OCT 6.0% 0.0% 0.0% 1.0% 1.0% 0.0% 0.0% 0.3% 6.8% 0.0% 0.0% 3.2% 14.4% 6.5% 11.3% 19.0% 13.2% 19.7% 13.5% 19.4%

NOV 16.0% 1.7% 0.3% 6.3% 5.1% 0.0% 0.0% 1.3% 13.7% 2.7% 1.7% 11.7% 27.3% 34.0% 41.7% 41.0% 5.1% 16.7% 18.3% 11.7%

GCM20c A1FI A2 B1 GCM20c A1FI A2 B1 GCM20c A1FI A2 B1 GCM20c A1FI A2 B1 GCM20c A1FI A2 B1

MAR 9.3% 7.1% 3.5% 9.4% 15.4% 1.3% 0.0% 7.7% 0.0% 4.2% 4.5% 2.9% 0.6% 17.7% 16.5% 1.3% 4.0% 6.1% 12.9% 9.7%

APR 19.8% 3.0% 1.7% 17.7% 9.3% 0.0% 0.7% 2.7% 1.3% 1.3% 3.0% 1.0% 0.8% 16.0% 15.3% 4.7% 5.8% 5.3% 5.0% 10.3%

MAY 30.6% 0.6% 0.3% 9.0% 4.7% 0.0% 0.0% 1.6% 5.6% 4.5% 6.8% 15.2% 6.7% 47.4% 43.9% 18.7% 8.6% 0.0% 0.0% 6.8%

JUN 10.5% 0.0% 0.0% 0.7% 0.0% 0.0% 0.0% 0.0% 17.7% 0.3% 3.0% 24.3% 36.3% 92.3% 92.3% 62.0% 2.8% 0.0% 0.0% 0.3%

JUL 0.8% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 57.3% 4.8% 7.1% 31.0% 30.6% 95.2% 92.9% 65.8% 0.3% 0.0% 0.0% 0.0%

AUG 0.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 60.8% 7.4% 13.2% 57.4% 27.3% 92.6% 86.8% 40.3% 0.3% 0.0% 0.0% 0.0%

SEP 6.4% 0.0% 0.0% 0.3% 0.3% 0.0% 0.0% 0.0% 39.3% 6.0% 10.3% 41.3% 21.6% 91.3% 84.0% 37.0% 6.2% 0.0% 0.0% 2.7%

OCT 15.6% 0.3% 0.0% 2.6% 1.4% 0.0% 0.0% 0.0% 17.0% 7.7% 11.6% 21.0% 11.5% 65.8% 62.9% 26.1% 13.4% 0.0% 0.6% 7.4%

NOV 12.8% 0.3% 1.3% 6.0% 3.8% 0.3% 0.0% 2.7% 2.4% 2.3% 2.7% 4.7% 3.1% 40.0% 30.0% 7.3% 10.8% 2.0% 4.0% 7.3%

CCSM3 - 500mb - 2090s
1 2 3 4 5

6 7 8 9 10

Table B.4 – The mean monthly frequency of the 10 CCSM3 synoptic patterns created at the 500z level. GCM20c percentages are based off of 1960-1999 
averages. Future model scenarios are based off of 2090-2099 averages. 
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GCM20c A1FI A2 B1 GCM20c A1FI A2 B1 GCM20c A1FI A2 B1 GCM20c A1FI A2 B1 GCM20c A1FI A2 B1

MAR 1.0% 10.0% 4.2% 1.6% 10.5% 10.3% 9.4% 10.3% 2.7% 7.1% 2.3% 3.9% 2.1% 28.7% 9.0% 3.2% 6.4% 5.8% 3.9% 6.8%

APR 3.3% 5.3% 7.0% 4.0% 14.8% 9.0% 20.0% 18.3% 6.0% 9.3% 7.7% 6.0% 1.5% 27.0% 6.0% 2.7% 10.3% 4.0% 3.7% 10.0%

MAY 8.1% 13.5% 13.9% 16.8% 23.9% 2.3% 11.0% 11.0% 16.1% 15.2% 32.3% 29.0% 2.8% 55.5% 18.1% 15.5% 17.2% 1.6% 7.4% 9.0%

JUN 22.0% 11.3% 26.7% 26.3% 11.4% 0.0% 1.0% 4.0% 36.3% 2.7% 13.7% 23.3% 13.7% 86.0% 56.7% 39.7% 10.7% 0.0% 0.3% 6.0%

JUL 67.4% 15.8% 48.7% 60.0% 0.4% 0.0% 0.0% 0.0% 15.9% 0.0% 0.0% 2.9% 15.1% 84.2% 51.3% 37.1% 1.9% 0.0% 0.0% 0.0%

AUG 67.8% 27.4% 68.4% 73.9% 1.5% 0.0% 0.0% 0.0% 19.3% 0.0% 2.9% 6.1% 8.9% 72.6% 28.7% 20.0% 2.6% 0.0% 0.0% 0.0%

SEP 36.6% 37.7% 48.3% 56.3% 13.1% 0.0% 2.0% 6.3% 23.5% 0.3% 15.0% 22.0% 2.3% 61.3% 30.0% 8.0% 16.8% 0.0% 2.0% 4.0%

OCT 19.1% 22.6% 37.7% 26.8% 16.2% 2.3% 9.7% 14.5% 15.3% 9.7% 14.2% 16.1% 4.6% 58.1% 24.5% 17.1% 15.9% 0.6% 1.3% 1.9%

NOV 6.2% 9.7% 5.0% 7.7% 14.0% 5.7% 10.3% 15.7% 7.1% 5.3% 9.7% 5.7% 5.3% 54.7% 25.7% 10.7% 7.6% 0.3% 3.0% 4.3%

GCM20c A1FI A2 B1 GCM20c A1FI A2 B1 GCM20c A1FI A2 B1 GCM20c A1FI A2 B1 GCM20c A1FI A2 B1

MAR 16.3% 11.9% 21.6% 21.3% 16.6% 0.0% 8.1% 11.6% 10.1% 0.6% 2.3% 3.9% 19.2% 3.9% 9.7% 15.5% 15.1% 21.6% 29.7% 21.9%

APR 14.6% 16.3% 17.3% 11.0% 11.4% 1.3% 5.7% 11.3% 5.4% 0.0% 2.3% 3.7% 14.1% 4.3% 7.3% 11.3% 18.6% 23.3% 23.0% 21.7%

MAY 10.4% 5.8% 7.7% 7.4% 4.2% 0.3% 0.3% 1.0% 1.6% 0.0% 0.0% 0.3% 4.4% 0.0% 1.0% 2.6% 11.4% 5.8% 8.4% 7.4%

JUN 1.7% 0.0% 0.7% 0.0% 0.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 1.0% 0.0% 0.0% 0.0% 3.8% 0.0% 1.0% 0.7%

JUL 0.6% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.6% 0.0% 0.0% 0.0%

AUG 1.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.3% 0.0% 0.0% 0.0%

SEP 3.0% 0.0% 1.3% 1.0% 0.8% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 1.0% 0.0% 0.0% 0.0% 3.6% 0.7% 1.3% 2.3%

OCT 7.4% 2.9% 3.5% 3.9% 2.5% 0.0% 0.0% 1.6% 1.4% 0.0% 0.0% 0.0% 6.3% 0.0% 1.0% 4.5% 11.6% 3.9% 8.1% 13.5%

NOV 12.6% 7.3% 18.7% 7.7% 5.8% 0.0% 0.7% 4.0% 3.3% 0.0% 0.7% 1.3% 12.8% 3.3% 7.0% 14.3% 25.3% 13.7% 19.3% 28.7%

1 2 3 4 5

6 7 8 9 10

CCSM3 - 700mb - 2090s

Table B.5 – The mean monthly frequency of the 10 CCSM3 synoptic patterns created at the 700z level. GCM20c percentages are based off of 1960-1999 
averages. Future model scenarios are based off of 2090-2099 averages. 
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GCM20c A1FI A2 B1 GCM20c A1FI A2 B1 GCM20c A1FI A2 B1 GCM20c A1FI A2 B1 GCM20c A1FI A2 B1

MAR 10.2% 2.9% 1.6% 7.4% 23.5% 13.5% 19.7% 21.0% 3.0% 26.5% 9.7% 6.8% 0.5% 7.7% 2.3% 0.6% 44.2% 6.1% 16.5% 34.8%

APR 21.8% 6.0% 6.7% 12.7% 19.4% 5.0% 17.7% 24.0% 15.8% 44.0% 31.7% 21.0% 3.8% 9.0% 6.7% 10.0% 24.4% 8.3% 14.3% 14.7%

MAY 13.1% 0.6% 0.6% 3.9% 8.1% 0.0% 0.6% 5.2% 30.8% 31.9% 36.8% 35.5% 16.7% 24.2% 10.3% 15.2% 6.5% 0.0% 0.6% 1.3%

JUN 0.7% 0.0% 0.0% 0.0% 0.7% 0.0% 0.0% 0.0% 26.4% 1.3% 3.0% 5.0% 10.7% 5.3% 0.7% 7.0% 0.0% 0.0% 0.0% 0.0%

JUL 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 3.3% 0.0% 0.0% 0.6% 5.7% 0.0% 0.0% 2.3% 0.0% 0.0% 0.0% 0.0%

AUG 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 2.7% 0.0% 0.0% 0.0% 9.4% 0.0% 0.0% 2.3% 0.3% 0.0% 0.0% 0.0%

SEP 0.6% 0.0% 0.0% 0.0% 2.0% 0.0% 0.0% 0.0% 12.3% 0.0% 0.3% 5.3% 15.3% 3.7% 4.3% 11.3% 1.1% 0.0% 0.0% 0.0%

OCT 2.6% 0.0% 0.3% 0.6% 10.6% 1.0% 0.6% 8.1% 12.1% 9.7% 8.7% 14.2% 8.0% 14.2% 9.4% 8.7% 11.9% 0.0% 0.3% 6.8%

NOV 3.0% 1.7% 0.0% 2.7% 28.8% 8.7% 20.3% 24.0% 1.7% 8.0% 6.0% 3.3% 0.3% 1.7% 0.7% 0.0% 24.8% 9.0% 3.0% 20.3%

GCM20c A1FI A2 B1 GCM20c A1FI A2 B1 GCM20c A1FI A2 B1 GCM20c A1FI A2 B1 GCM20c A1FI A2 B1

MAR 14.8% 1.0% 6.8% 16.1% 0.0% 2.6% 2.3% 0.6% 0.0% 8.4% 4.2% 0.6% 4.2% 26.8% 35.8% 11.9% 0.0% 4.5% 1.3% 0.0%

APR 3.9% 0.0% 0.3% 2.0% 0.6% 1.0% 1.3% 0.7% 0.7% 12.3% 10.3% 1.7% 9.2% 11.0% 10.0% 12.3% 1.1% 3.3% 1.0% 1.0%

MAY 0.3% 0.0% 0.0% 0.0% 2.1% 1.0% 2.3% 4.8% 6.5% 23.2% 31.9% 10.0% 12.1% 1.9% 1.3% 12.6% 4.0% 17.1% 15.5% 11.6%

JUN 0.3% 0.0% 0.0% 0.0% 2.6% 0.7% 0.7% 3.0% 29.9% 46.7% 54.3% 39.7% 4.8% 0.0% 0.0% 2.3% 24.6% 46.0% 41.3% 43.0%

JUL 0.0% 0.0% 0.0% 0.0% 9.4% 5.8% 11.3% 10.0% 28.7% 8.7% 7.7% 24.2% 0.4% 0.0% 0.0% 0.0% 52.6% 85.5% 81.0% 62.9%

AUG 0.0% 0.0% 0.0% 0.0% 14.0% 25.2% 14.8% 17.7% 16.5% 0.3% 1.9% 7.1% 1.9% 0.0% 0.0% 0.0% 55.3% 74.5% 83.2% 72.9%

SEP 0.3% 0.0% 0.0% 0.0% 23.6% 15.7% 14.7% 27.7% 10.7% 11.7% 11.3% 10.3% 13.5% 0.0% 3.0% 6.7% 20.8% 69.0% 66.3% 38.7%

OCT 4.6% 0.0% 0.0% 1.6% 11.2% 10.6% 11.6% 11.6% 4.4% 20.3% 14.2% 7.1% 30.9% 10.3% 27.7% 33.5% 3.7% 33.9% 27.1% 7.7%

NOV 27.4% 3.0% 7.7% 20.7% 2.0% 0.7% 1.7% 0.0% 0.4% 16.0% 17.0% 1.0% 13.3% 47.0% 43.0% 28.0% 0.0% 4.3% 0.7% 0.0%

6 7 8 9 10

CCSM3 - 850mb - 2090s
1 2 3 4 5

Table B.6 – The mean monthly frequency of the 10 CCSM3 synoptic patterns created at the 850t level. GCM20c percentages are based off of 1960-1999 
averages. Future model scenarios are based off of 2090-2099 averages. 
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GCM20c A2 B1 GCM20c A2 B1 GCM20c A2 B1 GCM20c A2 B1 GCM20c A2 B1

MAR 5.3% 11.9% 11.6% 5.1% 20.0% 16.8% 21.3% 12.3% 14.8% 2.2% 7.4% 3.5% 1.6% 8.1% 10.6%

APR 7.6% 8.3% 6.7% 10.6% 30.3% 19.7% 13.3% 5.0% 8.3% 6.2% 4.3% 4.3% 3.7% 17.0% 14.0%

MAY 15.2% 2.9% 5.8% 10.3% 12.9% 14.5% 3.3% 0.0% 2.3% 11.5% 8.4% 10.3% 17.1% 47.1% 30.0%

JUN 4.3% 0.3% 0.0% 6.2% 3.7% 4.3% 0.3% 0.0% 0.0% 7.2% 1.0% 2.0% 38.6% 46.3% 49.3%

JUL 0.3% 0.0% 0.0% 0.9% 0.0% 0.0% 0.0% 0.0% 0.0% 5.1% 0.0% 0.6% 23.9% 16.5% 25.8%

AUG 0.0% 0.0% 0.0% 0.6% 0.0% 0.3% 0.0% 0.0% 0.0% 4.8% 0.0% 0.0% 23.0% 17.7% 23.2%

SEP 7.1% 0.0% 0.0% 8.0% 10.0% 7.0% 0.8% 0.0% 0.0% 10.1% 1.0% 0.7% 23.3% 26.0% 18.3%

OCT 15.1% 1.6% 6.1% 18.8% 16.5% 18.7% 1.4% 0.0% 0.3% 13.9% 2.6% 1.0% 16.1% 38.7% 24.2%

NOV 10.7% 10.0% 14.7% 26.2% 48.0% 33.0% 11.1% 3.7% 7.7% 8.3% 1.3% 5.0% 6.9% 16.3% 12.7%

GCM20c A2 B1 GCM20c A2 B1 GCM20c A2 B1 GCM20c A2 B1 GCM20c A2 B1

MAR 0.8% 7.7% 2.6% 10.8% 9.7% 14.2% 14.5% 6.8% 5.2% 16.5% 3.9% 6.1% 22.9% 12.3% 14.5%

APR 1.3% 7.0% 3.3% 9.7% 17.3% 19.3% 11.6% 2.0% 5.7% 13.3% 0.3% 4.3% 22.8% 8.3% 14.3%

MAY 6.1% 14.5% 20.0% 10.5% 8.4% 8.1% 6.9% 1.6% 2.3% 6.2% 0.0% 1.0% 12.8% 4.2% 5.8%

JUN 37.6% 46.7% 42.7% 4.7% 1.3% 1.7% 0.5% 0.7% 0.0% 0.3% 0.0% 0.0% 1.3% 0.0% 0.0%

JUL 70.0% 83.5% 73.5% 0.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

AUG 71.7% 82.3% 76.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

SEP 47.3% 62.0% 74.0% 3.0% 1.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.6% 0.0% 0.0%

OCT 22.4% 34.5% 45.8% 5.9% 5.2% 3.2% 1.3% 0.0% 0.0% 1.8% 0.0% 0.0% 4.0% 1.0% 0.6%

NOV 3.7% 9.3% 12.7% 11.8% 6.7% 6.3% 5.8% 2.0% 2.0% 3.3% 0.7% 1.7% 12.2% 2.0% 4.3%

CGCM - 500mb 2050s
1 2 3 4 5

6 7 8 9 10

Table B.7 – The mean monthly frequency of the 10 CGCM3 synoptic patterns created at the 500z level. GCM20c percentages are based off of 1970-1999 
averages. Future model scenarios are based off of 2050-2059 averages. 
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GCM20c A2 B1 GCM20c A2 B1 GCM20c A2 B1 GCM20c A2 B1 GCM20c A2 B1

MAR 1.9% 11.0% 6.8% 3.1% 11.6% 7.1% 1.8% 2.6% 3.9% 21.6% 18.4% 17.7% 12.7% 13.9% 11.3%

APR 1.9% 19.3% 7.3% 6.4% 8.3% 5.3% 4.2% 3.7% 6.0% 17.6% 16.0% 18.7% 17.8% 10.7% 17.7%

MAY 6.5% 22.3% 17.4% 12.4% 18.4% 21.6% 9.1% 10.0% 14.8% 14.0% 8.1% 9.7% 20.6% 16.1% 13.5%

JUN 24.4% 59.7% 47.7% 34.4% 19.3% 25.0% 14.2% 11.3% 12.0% 4.4% 0.3% 1.7% 10.1% 2.7% 5.3%

JUL 27.7% 72.3% 60.3% 59.6% 25.8% 33.5% 7.8% 1.9% 5.2% 0.6% 0.0% 0.0% 1.7% 0.0% 0.0%

AUG 23.7% 78.1% 69.0% 61.5% 21.3% 28.1% 7.4% 0.6% 2.9% 0.5% 0.0% 0.0% 2.0% 0.0% 0.0%

SEP 7.1% 35.0% 19.3% 48.4% 43.7% 63.7% 10.0% 8.3% 6.7% 4.1% 2.7% 1.3% 9.4% 2.3% 2.3%

OCT 7.0% 30.3% 16.1% 31.1% 25.5% 41.6% 8.0% 16.5% 10.6% 8.1% 2.9% 11.6% 12.5% 6.5% 9.0%

NOV 5.0% 18.7% 11.3% 9.6% 10.7% 18.3% 4.4% 4.0% 4.7% 17.6% 20.0% 18.3% 11.7% 4.7% 5.3%

GCM20c A2 B1 GCM20c A2 B1 GCM20c A2 B1 GCM20c A2 B1 GCM20c A2 B1

MAR 12.2% 15.2% 20.6% 5.8% 7.1% 4.8% 15.2% 5.8% 9.0% 15.2% 7.1% 5.5% 10.5% 7.4% 13.2%

APR 13.0% 19.0% 15.0% 6.8% 3.3% 4.0% 13.9% 2.7% 6.0% 11.8% 3.3% 8.3% 6.7% 13.7% 11.7%

MAY 5.4% 7.4% 5.8% 10.4% 5.8% 5.5% 9.2% 1.3% 3.2% 7.3% 2.6% 3.5% 5.1% 8.1% 4.8%

JUN 1.3% 1.7% 3.0% 7.7% 1.7% 0.3% 1.2% 0.0% 0.0% 1.3% 0.7% 0.7% 1.7% 2.7% 4.3%

JUL 0.3% 0.0% 0.3% 2.7% 0.0% 0.6% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

AUG 0.0% 0.0% 0.0% 4.7% 0.0% 0.0% 0.0% 0.0% 0.0% 0.3% 0.0% 0.0% 0.3% 0.0% 0.0%

SEP 1.3% 3.7% 1.3% 15.3% 1.7% 5.0% 1.4% 0.0% 0.0% 0.7% 0.0% 0.0% 2.1% 2.7% 0.3%

OCT 8.5% 6.1% 3.9% 14.7% 5.2% 2.6% 3.4% 0.0% 1.0% 2.2% 0.6% 1.3% 4.6% 6.5% 2.3%

NOV 22.3% 29.7% 22.7% 7.0% 2.0% 4.3% 5.3% 2.0% 6.0% 7.7% 2.3% 2.3% 9.4% 6.0% 6.7%

CGCM - 700mb 2050s
1 2 3 4

6 7 8 9 10

5

Table B.8 – The mean monthly frequency of the 10 CGCM3 synoptic patterns created at the 700z level. GCM20c percentages are based off of 1970-1999 
averages. Future model scenarios are based off of 2050-2059 averages. 
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GCM20c A2 B1 GCM20c A2 B1 GCM20c A2 B1 GCM20c A2 B1 GCM20c A2 B1

MAR 0.0% 1.3% 0.6% 0.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.3% 1.0% 0.0% 4.6% 24.5% 14.5%

APR 4.2% 11.0% 10.0% 0.8% 6.3% 1.7% 0.0% 0.0% 0.0% 0.8% 1.7% 0.0% 7.0% 18.0% 8.7%

MAY 20.1% 44.8% 24.5% 5.3% 10.3% 16.5% 1.1% 1.9% 1.0% 11.6% 11.9% 15.5% 13.7% 5.5% 10.3%

JUN 38.0% 35.3% 42.3% 35.7% 46.7% 42.7% 3.4% 6.0% 1.7% 12.2% 9.3% 11.3% 3.2% 1.0% 1.3%

JUL 9.8% 2.9% 7.1% 51.2% 69.0% 67.4% 15.6% 15.8% 10.0% 22.8% 12.3% 15.5% 1.0% 0.0% 0.0%

AUG 7.5% 3.5% 5.8% 43.0% 61.0% 58.4% 20.2% 19.4% 18.1% 28.9% 16.1% 17.7% 0.5% 0.0% 0.0%

SEP 8.8% 10.3% 5.3% 19.6% 38.0% 31.0% 22.2% 24.7% 34.7% 27.1% 15.3% 14.0% 13.4% 9.3% 12.3%

OCT 3.3% 11.3% 4.8% 3.4% 21.0% 12.3% 8.4% 10.0% 13.5% 10.2% 14.8% 12.3% 35.7% 23.9% 33.2%

NOV 0.3% 0.3% 0.3% 0.3% 1.0% 0.3% 0.0% 0.0% 0.7% 0.0% 0.3% 0.0% 13.9% 17.7% 20.3%

GCM20c A2 B1 GCM20c A2 B1 GCM20c A2 B1 GCM20c A2 B1 GCM20c A2 B1

MAR 34.9% 18.7% 21.9% 23.3% 14.2% 21.9% 4.7% 8.1% 9.0% 25.6% 28.7% 28.4% 6.5% 3.5% 3.5%

APR 27.9% 9.7% 18.0% 6.7% 2.3% 2.7% 16.2% 17.0% 21.3% 34.2% 33.0% 36.0% 2.4% 1.0% 1.7%

MAY 10.1% 1.9% 7.4% 0.5% 0.0% 0.3% 21.1% 13.5% 15.8% 16.9% 10.0% 8.7% 0.0% 0.0% 0.0%

JUN 0.5% 0.0% 0.0% 0.0% 0.0% 0.0% 5.1% 1.3% 0.0% 2.0% 0.3% 0.7% 0.0% 0.0% 0.0%

JUL 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.6% 0.0% 0.0% 0.3% 0.0% 0.0% 0.0% 0.0% 0.0%

AUG 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

SEP 0.7% 0.3% 0.0% 0.3% 0.0% 0.0% 3.7% 1.0% 0.7% 4.0% 1.0% 1.7% 0.5% 0.0% 0.3%

OCT 6.2% 2.6% 3.5% 5.6% 0.6% 2.9% 4.7% 4.5% 1.6% 19.7% 9.7% 13.5% 2.7% 1.6% 2.3%

NOV 12.8% 3.7% 5.7% 23.1% 16.7% 28.0% 3.5% 1.7% 0.3% 28.7% 28.3% 27.7% 19.0% 30.3% 16.7%

1 2 3 4 5

6 7 8 9 10

CGCM - 850mb 2050s

Table B.9 – The mean monthly frequency of the 10 CGCM3 synoptic patterns created at the 850t level. GCM20c percentages are based off of 1970-1999 
averages. Future model scenarios are based off of 2050-2059 averages. 
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GCM20c A2 B1 GCM20c A2 B1 GCM20c A2 B1 GCM20c A2 B1 GCM20c A2 B1

MAR 5.3% 4.5% 12.3% 5.1% 31.0% 15.8% 21.3% 7.1% 6.5% 2.2% 2.6% 6.1% 1.6% 17.1% 7.7%

APR 7.6% 2.0% 8.0% 10.6% 39.0% 29.0% 13.3% 1.7% 3.7% 6.2% 0.0% 2.3% 3.7% 31.7% 20.0%

MAY 15.2% 1.0% 5.2% 10.3% 15.8% 15.8% 3.3% 0.0% 0.3% 11.5% 0.3% 2.9% 17.1% 60.0% 43.5%

JUN 4.3% 0.0% 0.0% 6.2% 2.0% 6.3% 0.3% 0.0% 0.0% 7.2% 0.0% 0.0% 38.6% 52.7% 52.7%

JUL 0.3% 0.0% 0.0% 0.9% 0.0% 0.0% 0.0% 0.0% 0.0% 5.1% 0.0% 0.0% 23.9% 21.0% 8.4%

AUG 0.0% 0.0% 0.0% 0.6% 0.0% 0.0% 0.0% 0.0% 0.0% 4.8% 0.0% 0.0% 23.0% 10.6% 17.4%

SEP 7.1% 0.0% 0.0% 8.0% 2.3% 9.7% 0.8% 0.0% 0.0% 10.1% 0.0% 0.3% 23.3% 24.3% 39.7%

OCT 15.1% 0.0% 1.6% 18.8% 16.1% 19.0% 1.4% 0.0% 0.3% 13.9% 0.0% 1.9% 16.1% 35.2% 35.5%

NOV 10.7% 2.0% 8.7% 26.2% 41.7% 38.0% 11.1% 0.7% 5.3% 8.3% 0.0% 1.7% 6.9% 25.0% 20.0%

GCM20c A2 B1 GCM20c A2 B1 GCM20c A2 B1 GCM20c A2 B1 GCM20c A2 B1

MAR 0.8% 5.5% 3.2% 10.8% 20.6% 11.6% 14.5% 1.6% 12.6% 16.5% 1.6% 7.7% 22.9% 8.4% 16.5%

APR 1.3% 8.3% 7.3% 9.7% 14.7% 14.0% 11.6% 1.0% 5.3% 13.3% 0.3% 0.0% 22.8% 1.3% 10.3%

MAY 6.1% 18.4% 19.4% 10.5% 3.2% 9.0% 6.9% 1.0% 1.3% 6.2% 0.0% 0.0% 12.8% 0.3% 2.6%

JUN 37.6% 45.3% 41.0% 4.7% 0.0% 0.0% 0.5% 0.0% 0.0% 0.3% 0.0% 0.0% 1.3% 0.0% 0.0%

JUL 70.0% 79.0% 91.6% 0.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

AUG 71.7% 89.4% 82.6% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

SEP 47.3% 73.3% 49.3% 3.0% 0.0% 1.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.6% 0.0% 0.0%

OCT 22.4% 47.4% 31.6% 5.9% 1.3% 6.8% 1.3% 0.0% 1.9% 1.8% 0.0% 0.0% 4.0% 0.0% 1.3%

NOV 3.7% 28.0% 6.3% 11.8% 2.7% 12.0% 5.8% 0.0% 2.7% 3.3% 0.0% 1.0% 12.2% 0.0% 4.3%

CGCM - 500mb 2090s
1 2 3 4 5

6 7 8 9 10

Table B.10 – The mean monthly frequency of the 10 CGCM3 synoptic patterns created at the 500z level. GCM20c percentages are based off of 1970-1999 
averages. Future model scenarios are based off of 2090-2099 averages. 
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GCM20c A2 B1 GCM20c A2 B1 GCM20c A2 B1 GCM20c A2 B1 GCM20c A2 B1

MAR 1.9% 14.5% 9.0% 3.1% 6.8% 7.7% 1.8% 3.2% 4.5% 21.6% 17.4% 17.4% 12.7% 9.7% 15.5%

APR 1.9% 32.3% 17.7% 6.4% 4.3% 9.7% 4.2% 4.7% 6.3% 17.6% 11.0% 17.0% 17.8% 7.3% 10.3%

MAY 6.5% 51.6% 31.6% 12.4% 10.3% 16.5% 9.1% 11.9% 8.4% 14.0% 3.5% 7.7% 20.6% 5.2% 11.0%

JUN 24.4% 86.7% 62.0% 34.4% 6.3% 19.7% 14.2% 6.3% 11.0% 4.4% 0.0% 0.3% 10.1% 0.0% 1.7%

JUL 27.7% 96.8% 67.4% 59.6% 2.6% 32.3% 7.8% 0.6% 0.3% 0.6% 0.0% 0.0% 1.7% 0.0% 0.0%

AUG 23.7% 98.7% 75.8% 61.5% 1.3% 23.5% 7.4% 0.0% 0.6% 0.5% 0.0% 0.0% 2.0% 0.0% 0.0%

SEP 7.1% 78.3% 38.3% 48.4% 19.0% 38.3% 10.0% 2.3% 14.0% 4.1% 0.0% 1.0% 9.4% 0.0% 2.3%

OCT 7.0% 52.6% 27.4% 31.1% 23.9% 25.8% 8.0% 6.5% 12.6% 8.1% 4.8% 3.5% 12.5% 0.3% 7.7%

NOV 5.0% 42.0% 17.3% 9.6% 12.0% 11.0% 4.4% 4.3% 5.0% 17.6% 13.3% 14.0% 11.7% 0.7% 8.7%

GCM20c A2 B1 GCM20c A2 B1 GCM20c A2 B1 GCM20c A2 B1 GCM20c A2 B1

MAR 12.2% 22.6% 11.3% 5.8% 1.6% 5.2% 15.2% 3.9% 6.8% 15.2% 6.1% 13.2% 10.5% 14.2% 9.4%

APR 13.0% 24.7% 15.7% 6.8% 0.3% 0.7% 13.9% 0.7% 3.3% 11.8% 1.0% 8.0% 6.7% 13.7% 11.3%

MAY 5.4% 9.4% 11.9% 10.4% 1.0% 3.2% 9.2% 0.0% 1.6% 7.3% 2.3% 1.9% 5.1% 4.8% 6.1%

JUN 1.3% 0.7% 3.3% 7.7% 0.0% 0.7% 1.2% 0.0% 0.0% 1.3% 0.0% 0.0% 1.7% 0.0% 1.3%

JUL 0.3% 0.0% 0.0% 2.7% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

AUG 0.0% 0.0% 0.0% 4.7% 0.0% 0.0% 0.0% 0.0% 0.0% 0.3% 0.0% 0.0% 0.3% 0.0% 0.0%

SEP 1.3% 0.0% 3.0% 15.3% 0.3% 1.0% 1.4% 0.0% 0.0% 0.7% 0.0% 0.0% 2.1% 0.0% 2.0%

OCT 8.5% 7.1% 11.3% 14.7% 0.0% 3.2% 3.4% 0.0% 0.0% 2.2% 0.0% 3.2% 4.6% 4.8% 5.2%

NOV 22.3% 22.0% 21.0% 7.0% 0.3% 2.3% 5.3% 0.3% 4.7% 7.7% 0.3% 5.0% 9.4% 4.7% 11.0%

1 2 3 4 5

6 7 8 9 10

CGCM - 700mb 2090s

Table B.11 – The mean monthly frequency of the 10 CGCM3 synoptic patterns created at the 700z level. GCM20c percentages are based off of 1970-1999 
averages. Future model scenarios are based off of 2090-2099 averages. 
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GCM20c A2 B1 GCM20c A2 B1 GCM20c A2 B1 GCM20c A2 B1 GCM20c A2 B1

MAR 0.0% 5.5% 1.0% 0.3% 1.9% 0.3% 0.0% 0.0% 0.0% 0.3% 1.3% 1.6% 4.6% 19.7% 15.8%

APR 4.2% 32.3% 13.3% 0.8% 11.3% 4.7% 0.0% 0.0% 0.0% 0.8% 1.3% 2.3% 7.0% 9.3% 15.7%

MAY 20.1% 46.8% 43.2% 5.3% 21.9% 18.4% 1.1% 0.6% 2.3% 11.6% 13.5% 8.7% 13.7% 3.5% 4.2%

JUN 38.0% 35.0% 41.3% 35.7% 60.0% 43.3% 3.4% 0.3% 2.3% 12.2% 4.7% 10.7% 3.2% 0.0% 1.0%

JUL 9.8% 3.2% 2.3% 51.2% 75.8% 63.5% 15.6% 11.6% 31.0% 22.8% 9.4% 3.2% 1.0% 0.0% 0.0%

AUG 7.5% 0.3% 1.3% 43.0% 77.1% 60.6% 20.2% 14.8% 25.2% 28.9% 7.7% 12.9% 0.5% 0.0% 0.0%

SEP 8.8% 7.7% 15.0% 19.6% 58.3% 43.7% 22.2% 24.3% 10.3% 27.1% 8.3% 18.7% 13.4% 1.3% 10.3%

OCT 3.3% 13.2% 8.7% 3.4% 37.4% 21.6% 8.4% 12.3% 5.8% 10.2% 8.1% 11.3% 35.7% 21.9% 25.5%

NOV 0.3% 4.0% 1.7% 0.3% 6.3% 1.7% 0.0% 0.3% 0.0% 0.0% 0.7% 0.0% 13.9% 34.3% 14.7%

GCM20c A2 B1 GCM20c A2 B1 GCM20c A2 B1 GCM20c A2 B1 GCM20c A2 B1

MAR 34.9% 13.9% 31.0% 23.3% 6.5% 11.6% 4.7% 9.4% 9.7% 25.6% 39.4% 24.2% 6.5% 2.6% 4.8%

APR 27.9% 5.0% 13.3% 6.7% 1.3% 1.7% 16.2% 9.3% 18.0% 34.2% 29.0% 29.7% 2.4% 1.0% 1.3%

MAY 10.1% 1.6% 1.6% 0.5% 0.0% 0.0% 21.1% 5.5% 13.2% 16.9% 6.5% 8.4% 0.0% 0.0% 0.0%

JUN 0.5% 0.0% 0.0% 0.0% 0.0% 0.0% 5.1% 0.0% 0.7% 2.0% 0.0% 0.7% 0.0% 0.0% 0.0%

JUL 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.6% 0.0% 0.0% 0.3% 0.0% 0.0% 0.0% 0.0% 0.0%

AUG 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

SEP 0.7% 0.0% 0.0% 0.3% 0.0% 0.0% 3.7% 0.0% 0.7% 4.0% 0.0% 1.3% 0.5% 0.0% 0.0%

OCT 6.2% 0.3% 4.2% 5.6% 0.3% 0.3% 4.7% 0.0% 5.8% 19.7% 4.5% 13.9% 2.7% 1.9% 2.9%

NOV 12.8% 1.3% 8.0% 23.1% 7.0% 15.3% 3.5% 1.3% 2.3% 28.7% 19.7% 31.0% 19.0% 25.0% 25.3%

6 7 8 9 10

CGCM - 850mb 2090s
1 2 3 4 5

Table B.12 – The mean monthly frequency of the 10 CGCM3 synoptic patterns created at the 850t level. GCM20c percentages are based off of 1970-1999 
averages. Future model scenarios are based off of 2090-2099 averages. 
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APPENDIX C 

 

Graphs in Appendix C represent the seasonality of the CCSM3 patterns that did not occur 

frequently in the summer (and thus were not discussed in section 3.2 above). 

 
 

Monthly Frequency of CCSM3 500z Non Summer Patterns 
 
 

 

 

 

Figure C.1 – The mean monthly frequency of the 7 non-summer CCSM3 synoptic patterns created at the 500z 
level. GCM20c percentages are based off of 1960-1999 averages. Future model scenarios are based off of 
2050-2059 averages (left) and 2090-2099 averages (right). Continued on the next page. 
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Figure C.1 – Continued 



141 

 

Monthly Frequency of CCSM3 700z Non Summer Patterns 
 

 

 

 

 

Figure C.2 – The mean monthly frequency of the 7 non-summer CCSM3 synoptic patterns created at the 700z 
level. GCM20c percentages are based off of 1960-1999 averages. Future model scenarios are based off of 
2050-2059 averages (left) and 2090-2099 averages (right). Continued on the next page. 
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Figure C.2 – Continued 



143 

 

Monthly Frequency of CCSM3 850t Non Summer Patterns  
 

 

 

 

 

Figure C.3 – The mean monthly frequency of the 6 non-summer CCSM3 synoptic patterns created at the 850t 
level. GCM20c percentages are based off of 1960-1999 averages. Future model scenarios are based off of 
2050-2059 averages (left) and 2090-2099 averages (right). Continued on the next page. 
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Figure C.3 – Continued 


